Entertainment Cost Efficiency Analysis With Data Envelopment Analysis (Dea) And Fuzzy Logic (Flp & C-Iowa) Approach To Sales Level

Analisa Efisiensi Biaya Entertainment Dengan Pendekatan Data Envelopment Analysis (Dea) Dan Fuzzy Logic (Flp & C-Iowa) Terhadap Tingkat Penjualan

  • Dwi Kakung Saputro Program Studi Teknik Industri, Fakultas Sains dan Teknologi, Universitas Muhammadiyah Sidoarjo
  • Tedjo Sukmono Universitas Muhammadiyah Sidoarjo
Keywords: Consistency Index (CI), DEA, DMU, Fuzzy Logic, Objective value

Abstract

It caused some problems regarding to calculation and measurement of costs which is issued for the level of efficiency desired by the company, namely PT. LLL Surabaya. From the results of measurements and analysis, it shows that system has objective value in “efficient” category. Therefore, the ranking results of regional operating system (DMU3) are the most optimal in terms of sales capacity, which is Rp. 11,745,050,779. It is caused by the impact of providing these costs. Based on the decision-making preferences related to the entertainment costing system, (CI) value is 0.18 for (P1) and 0.03 for (P2). It means that marketing department has more preference for entertainment costing system should be given constantly with the aim that total sales capacity can continue to increase.

References

[1] Firman Aji Gunawan. (2013). “Analisa Tingkat Efisiensi Bank BUMN Dengan Pendekatan Data Envelopment
Analysis (DEA)”, Jurnal Ilmu & Riset Manajemen, 2(8).
[2] Filardo, A., Negro, N.P. dan Kunaifi, A. (2017). “Penerapan Data Envelopment Analysis dalam Pengukuran Efisiensi Retailer Produk Kendaraan Merek Toyota”, Jurnal Sains dan Seni ITS, 6(1),pp.73-77.
[3] Rasyid, H. A. L. (2012). “Pemeringkatan Dan Pengukuran Efisiensi Supplier Berdasarkan Green Purchasing Dengan Metode Analytical Network Procces Dan Data Envelopment Analysis”, Program Studi Teknik Industri, Fakultas Teknik, Universitas Indonesia.
[4] Susilaningrum D, W., Kuswanto, H. dan Suliasih, W.. (2013). “Penerapan Data Envelopment Analysis Untuk Efisiensi Kinerja Karyawan Pada PT X”; Jurnal Sains dan Seni ITS.
[5] Kusumadewi, Sri, dan Hari Purnomo. 2004. “Aplikasi Logika Fuzzy Untuk Pendukung Keputusan”. Yogyakarta: Graha Ilmu.
[6] Kusumadewi, S., Hartati, S., Harjoko, A., dan Retantya Wardoyo. 2006. “Fuzzy Multi-Attribute Decision Making”.Yogyakarta: Graha Ilmu.
Published
2021-03-30