Rice Production Forecasting System in East Java Using Double Exponential Smoothing Method

Sistem Peramalan Produksi Padi di Jawa Timur Menggunakan Metode Double Exponential Smoothing

  • Siti Nurul Afiyah 3Institut Teknologi dan Bisnis Asia Malang
  • Fajar Kurniawan Institut Teknologi Adhi Tama Surabaya
  • Nur Lailatul Aqromi Institut Teknologi dan Bisnis Asia Malang
Keywords: Forecasting System, Double Exponential Smoothing, Rice Production

Abstract

. Rice (Orza savita L.) is one of the most important carbohydrate-producing food plants in the world, besides wheat and corn. The need for rice continues to increase because the increase in the number of consumers is not balanced with sufficient production. According to BPS (2017), rice production in East Java Province in 2017 amounted to 13.06 million tons of Dry Milled Grain (GKG). The aim of this research is to predict / forecast the yield of rice production in the next period in order to become the target of rice production in the next period. The raised problem is how to predict the rice production. From the data that has been obtained from 1993 to 2017 the data shows increasing gradually which is classified into trend data. Thus, the forecasting method that can be used is the double exponential smoothing method. In the calculation process, it is done by finding S ', S' ', a, b & also the next period of forecasting sessions, using 0 <x <1. From the calculation of alpha 0.1 - 0.9 obtained the smallest MAPE of 3.14 in alpha 0.5. The results of the forecast for the next period increased 13299827.49 tons with an accuracy of 96.86%.

References

[1] I. Nurhati, S. Ramdhaniati, and N. Zuraida, “Peranan dan Dominasi Varietas Unggul Baru dalam Peningkatan Produksi Padi di Jawa Barat,” Bul. Plasma Nutfah, vol. 14, no. 1, p. 8, 2016, doi: 10.21082/blpn.v14n1.2008.p8-13.
[2] H. D. P. Habsari, I. Purnamasari, and D. Yuniarti, “PERAMALAN MENGGUNAKAN METODE DOUBLE EXPONENTIAL SMOOTHING DAN VERIFIKASI HASIL PERAMALAN MENGGUNAKAN GRAFIK PENGENDALI TRACKING SIGNAL ( Studi Kasus : Data IHK Provinsi Kalimantan Timur ) Forecasting Uses Double Exponential Smoothing Method and Forecastin,” J. Ilmu Mat. dan Terap., vol. 14, no. 1, pp. 13–22, 2020.
[3] A. Purwanto and S. N. Afiyah, “Sistem Peramalan Produksi Jagung Provinsi Jawa Barat Menggunakan Metode Double Exponential Smoothing,” J. Ilm. Teknol. Inf. Asia, vol. 14, no. 2, p. 85, 2020, doi: 10.32815/jitika.v14i2.462.
[4] S. N. Afiyah and D. K. Wijaya, “Sistem Peramalan Indeks Harga Konsumen (IHK) Menggunakan Metode Double Exponential smoothing,” J. Ilm. Teknol. Inf. Asia, vol. 12, no. 1, p. 56, 2018, doi: 10.32815/jitika.v12i1.243.
[5] R. Fajri and T. M. Johan, “Implementasi Peramalan Double Exponential Smoothing Pada Kasus Kekerasan Anak Di Pusat Pelayanan Terpadu Pemberdayaan Perempuan Dan Anak,” J. ECOTIPE, vol. 4, no. 2, pp. 6–13, 2017, doi: 10.33019/ecotipe.v4i2.6.
[6] E. Pujiati, D. Yuniarti, and R. Goejantoro, “Peramalan Dengan Menggunakan Metode Double Exponential Smoothing Dari Brown (Studi Kasus : Indeks Harga Konsumen (IHK) Kota Samarinda),” J. EKSPONENSIAL, vol. 7, no. 1, pp. 33–40, 2016, [Online]. Available: http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/23.
[7] W. Sari, “Perbandingan Metode Double Exponential Smoothing, Simple Moving Average dan Least Square untuk Forecasting Penjualan Semen,” pp. 1–83, 2020.
[8] S. Marlianah, C. Meilani, Q. Lina, and E. Widodo, “Analisis Double Exponential Smoothing Untuk Meramalkan Utang Pemerintah Indonesia ke Luar Negeri ( Studi Kasus : Data Utang Pemerintah Indonesia ke Luar Negeri dari Bulan Januari 2010 sampai April 2019 ),” Semin. Nas. MIPA UNIBA, no. April, pp. 184–191, 2019.
[9] F. I. Y. Dwi Hilda Anjasari, Eko Listiwikono, “Perbandingan Metode Double Exponential Smoothing Holt Dan Metode Triple Exponential Smoothing Holt-Winters Untuk Peramalan Wisatawan Grand Watu Dodol PERBANDINGAN,” J. Pendidik. Mat. Mat., vol. 2, no. 2, pp. 12–25, 2018.
[10] R. Ariyanto, D. Puspitasari, and F. Ericawati, “Penerapan Metode Double Exponential Smoothing Pada Peramalan Produksi Tanaman Pangan,” J. Inform. Polinema, vol. 4, no. 1, p. 57, 2017, doi: 10.33795/jip.v4i1.145.
[11] I. Sungkawa and R. T. Megasari, “NILAI RAMALAN DATA DERET WAKTU DALAM SELEKSI MODEL PERAMALAN VOLUME PENJUALAN PT SATRIAMANDIRI CITRAMULIA Iwa Sungkawa ; Ries Tri Megasari,” ComTech, vol. 2, no. 2, pp. 636–645, 2011.
Published
2021-07-08