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Preface 

This textbook is required for the differential equation course for the 2nd 

course in the following areas: 60710400 – Ecology and environmental protection 

(by sector), 60722500 – Geodesy, cartography and cadastre (by function), 

60722800 – Cadastre (by type of activity), 60730300 – Civil engineering: 

construction of buildings and structures ,60730400 – Construction and installation 

of utilities (by type), 60730500 – Design and operation of water supply and 

sewerage systems, 60730800 – Road construction (by type of activity) of 

universities because currently in many books on electrical engineering, radio 

engineering, and automation, the study of solutions to systems of differential 

equations is carried out using the apparatus of matrix theory. 

Here we consider the method of successive approximations for solving 

differential equations, and prove a theorem on the existence of a solution to a 

differential equation and a uniqueness theorem. 

In this tutorial, students can use the solved examples and can independently 

solve these examples themselves. With this textbook, students can read lecture 

topics and can take advantage of practical exercises. 

Training engineers who meet modern requirements is impossible without 

increasing the level of knowledge in mathematics, which is considered 

fundamental. Therefore, “Higher Mathematics” is of great importance in the 

formation of a wide range of engineers. In addition, mathematics is a tool for the 

successful mastery of many technical sciences. 

The subject “Differential Equations” is related to technical solutions to 

problems. Studying modern mathematical methods, helping students acquire the 

knowledge they acquired after graduating from higher educational institutions, in 

solving pressing practical issues in their daily activities, as well as studying 

scientific and methodological literature on modern methods of improving their 

professional qualifications. 
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Chapter I. 

Differential equations 

1- §. Problems leading to differential equations. 

 

Differential equation - this is an equation connecting two or more 

functionally dependent values of their differentials or, equivalently, derivatives. 

The problem of composing and solving, as they say, integrating) such equations 

often arises in physics and technology. [1]. 

In this chapter we want to consider ordinary differential equations of all 

orders, so that it is convenient for all students to solve. 

When solving many geometric and physical problems, you have to find an 

unknown function given a relationship between this unknown function, its 

derivatives and independent variables. Such a relationship is called a differential 

equation, and finding a function that satisfies the equation is called solving, or 

integrating, the given equation. 

Let the function 𝑦 = 𝑓(𝑥) reflect the quantitative side of some 

phenomenon. Often, when considering this phenomenon, we cannot directly 

establish the nature of the dependence of them, but we can establish the 

relationship between the quantities x and y the derivatives of y x: y′, y′′, …, 𝑦(𝑛), 

that is, write a differential equation. 

From the obtained dependence between the variables x, y and derivatives, it 

is necessary to establish a direct dependence on x, that is, find 𝑦 = 𝑓 (𝑥) or, as 

they say, integrate the differential equation. 

Let's consider several problems leading to differential equations. [10]. 

Task 1. Find a curve that has the property that a segment of any of its 

tangents, enclosed between the coordinate axes, is divided in half at the point of 

tangency. 

Let 𝑦 = 𝑓(𝑥) be the equation of the desiredcurve, 𝑀(𝑥, 𝑦) – arbitrary point 

at y 
 

In the curve (Fig. 1). 

The angular coefficient of the tangent in 𝑦 𝑀 (𝑥, 𝑦) 𝑦 = 𝑓 (𝑥) this point is 

equal to y′. According to the condition, 𝑥 𝐴𝑀 = 𝑀𝐵, that is, a 0𝑃𝐴 = 𝑥 means at 

any point of the M curve О̅̅̅Р̅ = Р̅̅̅А̅ = х 
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(Fig.1) 𝑡𝑔 < 𝑀𝐴𝑃 = −𝑦′ = 
𝑥 

; there fore, 𝑦′ = − 
𝑦

 
𝑦 𝑥 

We have obtained a relationship connecting the unknown function y, the 

independent variable and the derivative of y, that is, we have obtained a differential 

equation with respect to. This equation satisfies function 𝑦 = 
С 

, where C is any 
х 

number. 
Indeed, if 𝑦 = 

С 
, then 𝑦′ = − 

С
 

 
у С 

.
 

х х2 𝑎𝑛𝑑 − 
х 

= − 
х2 

Thus, there are innumerable sets of curves (“family” of curves) differing in the 

values of the constant C. This is a family of equilateral hyperbolas whose 

asymptotes are coordinate axes. 

In order to select one specific curve from this family of curves, it is enough 

to specify the point (𝑥0, 𝑦0) through which this curve passes and determine the 

corresponding value of the constant C. 

For example, through the point (2, 4) there will be a family curve for which 

4 = 
С
, that is, 𝐶 = 8. The equation of this curve is  у = 

8
 

2 х 

Problem 2. (radioactive decay problem). It has been established 

experimentally that the rate of radioactive decay at each moment of time is 

proportional to the available amount of radioactive substance. It is assumed that the 

amount of radioactive substance in the rock is so small that it does not cause a 

chain reaction. It is required to find the law of decay of a substance, that is, to find 

the dependence of the amount of a radioactive substance on its type on time. 

Solution. Let m be the amount of radioactive substance by type at time t. 

The rate of change in the amount of substance is equal. Denoting the positive 

proportionality coefficient by k, we write the basic law of radioactive decay in the 

form: 𝑑𝑚 
𝑑𝑡 

𝑑𝑚 
 

 

𝑑𝑡 
= −𝑘𝑚 

(the minus sign is removed because the decay rate is negative 𝑑𝑚). 
𝑑𝑡 

The resulting relationship is a differential equation relating the desired 

derivative function 𝑑𝑚 . 
𝑑𝑡 

It is easy to verify that any function 

𝑚 = 𝐶𝑒−𝑘𝑡 
Where C is the number that satisfies this equation. 

Really, 

 

that is 

𝑑𝑚 = −𝑘𝐶𝑒−𝑘𝑡, −𝑘𝑚 = −𝑘𝐶𝑒−𝑘𝑡 
𝑑𝑡 
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0 

𝑇 1 

𝑑𝑚 
 

 

𝑑𝑡 
≡ −𝑘𝑚 

Since C is an arbitrary number, the equation has an infinite number of 

solutions that differ in the values of the constant C. In order for the problem to 

become specific, it is enough to indicate the amount of radioactive substance in the 

rock at some (“initial”) moment of time 𝑡0 . Let at 𝑡 = 𝑡0 there were 𝑚0 grams of 

the substance in the rock. Then the constant corresponding to the solution will be 

determined from the relationship, and we will obtain the decaylaw in the form: 

𝑡0𝑚0 = 𝐶0𝑒−𝑘𝑡0 С0 = 𝑚0𝑒𝑘𝑡0 

𝑚 = 𝑚0𝑒−𝑘(𝑡−𝑡0). 

 

Using this relationship, you can determine the half-life of substance T, that 

is, the time during which the amount of the substance will decrease by half. For 

this we set 𝑚 = 
𝑚0

 

2 
, 𝑎𝑡 − 𝑡0 = 𝑇 

 𝑚0 = 𝑚 𝑒−𝑘𝑇, 𝑒−𝑘𝑇 1 𝑙𝑛2 
≈ 

0,693 
=  , 𝑇 = 

2 2 𝑘 𝑘 

The constant k is assumed to be known. 

If the radioactivity coefficient k is unknown, but the half-life of the substance is 

known, then 𝑘 = 
𝑙𝑛2

 
𝑇 

and the decay law will be written as: 

𝑡−𝑡0 

𝑚 = 𝑚0 (
2
) . 

 

Problem 3. A material point of mass m moves in a straight line, attracted to 

a fixed center by a force proportional to the distance of the point to this center. 

Find the law of motion of the point. 

 

(Fig.2) 

Let's take point 0 as the origin, and the straight line along which the point 

moves as the OY axis (Fig. 2). 

Attractive force 𝑃 = − 𝑘𝑦, where y is the coordinate of point m, a 

k –coefficient of proportionality (𝑘 > 0). Since, according to Newton’s second 

law, force is equal to the product of mass m and acceleration, we obtain the 

differential equation of 𝑑
2

 
𝑑𝑡2 

motion of a point: 
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 𝑣 

𝑑2𝑦 
𝑚 

𝑑𝑡2 = −𝑘𝑦 

This equation relates the desired function y, its second derivative 𝑑
2

 
𝑑𝑡2 

 
 

 
and 

the independent variable - time t. It's easy to check that the function 
 

𝑦 = 𝐶 𝑐𝑜𝑠√ 
𝑘 

𝑡 + 𝐶 𝑠𝑖𝑛√ 
𝑘 

t 
1 𝑚 2 𝑚 

 
С1 𝑎𝑛𝑑 С2 for any value of the number satisfies the equation. The constants on 

which the solution of the equation depends will be determined if specific “initial” 

conditions of motion are specified. 

Let, for example, it be known that at time 𝑡 = 0 the material point was at a 

distance from point 𝑎0 0 and had a speed 𝑣0. 

Then, substituting the relations 
 

 

𝑦 = 𝐶1 𝑐𝑜𝑠𝜔𝑡 + 𝐶2 𝑠𝑖𝑛𝜔𝑡, 𝜔 = √ 
𝑘

 
𝑚 

𝑦′ = −𝐶1𝜔𝑠𝑖𝑛𝜔𝑡 + 𝐶2𝜔𝑐𝑜𝑠𝜔𝑡 

 
instead of 𝑡 the value 𝑡 = 0, we get 𝑎0 = 𝐶1, 𝑣0 = 𝜔𝐶2, 

С1 = 𝑎0 , 𝐶2 = 
𝑣0 

𝜔 
Thus, the desired law of motion has the form: 

 

Believing 

𝑦 = 𝑎0 𝑐𝑜𝑠 𝜔𝑡 + 
𝑣0 𝑠𝑖𝑛 𝜔𝑡 
𝜔 

𝑎0 = 𝑅𝑠𝑖𝑛𝛼, 
𝑉0 = 𝑅𝑐𝑜𝑠𝛼, 
𝜔 

we can write the law of motion as: 

 

 

 
 

2 
(here 𝑅 = √𝑎2 +  0  , 𝑡𝑔𝛼 = 

𝑦 = 𝑅𝑠𝑖𝑛(𝛼 + 𝜔𝑡) 
𝑎0𝜔 

), from which we conclude that the movement in 
 

0 𝜔2 𝑣0 

question is a periodic oscillatory movement, R is the amplitude, is the initial phase, 
 

is the frequency of oscillation 𝜔 = √
 𝑘 

. 
𝑚 

Definition 1. Ordinary differential equationn – th order called a 

relationship of the form: 

𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛)) = 0 
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𝑦′ + 𝑥𝑦 − 𝑥2 = 0, ′ 𝑥 ′ ′ 𝑦 = 0 

where 𝐹 is a function defined outside a certain region, 𝑥 is an independent variable, 

y is the desired function of the variables 𝑥, and a are its derivatives у′, у′′, … , у(𝑛). 

In this case, the function F can clearly be independent of a, but it must necessarily 

depend on у′, у′′, … , у(𝑛−1)𝑦(𝑛). 
Definition 2. Order of a differential equation is called the order of the 

highest derivative included in the equation. 

So, for example, equations 
2 5 2 

𝑥𝑦 + 𝑒 = 0, 𝑦𝑦 − 1 = 0 ,  𝑦 + 𝑒 
 

will be first-order differential equations, the equations 

𝑦′′ + 𝑘𝑦′ − 𝑏𝑦 − 𝑠𝑖𝑛𝑥 = 0 , 𝑥𝑦′′ − 𝑦′3 − 𝑦 = 0, 𝑦′′ − 𝑦′ = 1 
there is a second order equation, equations 

𝑦2 − 𝑦′′′ + 𝑥5 = 0 
has third order, etc. 

 

Definition3. By decisionof a differential equation is any function y = f(x), 

the substitution of which into this equation turns it into an identity. 

For example, the differential equation 𝑦′′ + 𝑦 = 0 has a solution of the 

function 𝑦 = 𝑐𝑜𝑠𝑥, if then 𝑦′ = −𝑠𝑖𝑛𝑥, 𝑦′′ = −𝑐𝑜𝑠𝑥 and −𝑐𝑜𝑠𝑥 + 𝑐𝑜𝑠𝑥 ≡ 0. 

The solution to a differential equation, defined implicitly by the relation 

Ф (𝑥, 𝑦) = 0, is called the integral of this equation. 

The graph of the solution to a differential equation is called its integral curve. 

Example 1.Let us have the equation 𝑑
2𝑦 

+ 𝑦 = 0. 
𝑑𝑥2 

Function 𝑦 = 𝑠𝑖𝑛𝑥, 𝑦 = 2𝑐𝑜𝑠𝑥, 𝑦 = 3𝑠𝑖𝑛𝑥 – 𝑐𝑜𝑠𝑥 and general functions of 

the form 

 

𝑦 = 𝐶1𝑠𝑖𝑛𝑥, 𝑦 = 𝐶2𝑐𝑜𝑠𝑥 𝑜𝑟 𝑦 = 𝐶1𝑠𝑖𝑛𝑥 + 𝐶2𝑐𝑜𝑠𝑥 

 
are solutions to this equation for any choice of constants 𝐶1 and 𝐶2; This can be 

easily verified by putting the indicated functions into the equation. 

 

Example 2. Let's consider the equation 𝑦′𝑥 – 𝑥2 – 𝑦 = 0. Its solutions 

will be all functions of the form у = 𝑥2 + Сх , where С is any constant. Indeed, 

differentiating the function 𝑦 = 𝑥2 + 𝐶𝑥, we find 𝑦′ = 2𝑥 + 𝐶. Substituting the 

expressions u and y′into the original equation, we obtain the identity 

(2𝑥 + 𝐶)𝑥 – 𝑥2 – 𝑥2 – 𝐶𝑥 = 0 

 
Example 3. Solve the equation 𝑥(𝑦2 – 4)𝑑𝑥 + 𝑦𝑑𝑦 = 0. 
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Solution. Dividing the two sides of the equation na 𝑦2 − 4 ≠ 0, we have 
𝑦𝑑𝑦 

𝑥𝑑𝑥 + 
𝑦2 − 4 

= 0 

Integrating, we find 

𝑥2 + 𝑙𝑛|𝑦2 − 4| = 𝑙𝑛|𝐶|, 𝑦2 − 4 = 𝐶𝑒−𝑥
2

 

This is the general solution to this differential equation. 

Let now 𝑦2 − 4 = 0, that is, 𝑦 = ±2 . 

By direct substitution we verify that 𝑦 = ±2 is a solution to the original 

equation. But it will not be a special solution, since it can be obtained from the 

general solution with 𝐶 = 0. 
 

Try to decide for yourself [3] 

1. Find the partial integral of the equation у′𝑐𝑜𝑠𝑥 = 
𝑦
 

𝑙𝑛𝑦 

 
satisfying the initial 

condition у(0) = 1. 
2. Find the general integral of the equation 𝑦′ = 𝑡𝑔𝑥𝑐𝑡𝑔𝑦. 
3. Find a partial solution to a differential equation 

(1 + 𝑥2)𝑑𝑦 + 𝑦𝑑𝑥 = 0 initial condition 𝑦 (1) = 1. 
4. Find curves for which the sum of the length of the normal and the subnormal is 

a constant value equal to a. The length of the subnormal is equal to , and the 
 

length of the normal is equal to |𝑦𝑦′||𝑦√1 + 𝑦′2|. 
 

Answers.1) 1 
2 

𝑙𝑛2 
𝑥 

𝑦 = 𝑙𝑛𝑡𝑔 ( 
2 

+ 
𝜋
) 

4 

2) 𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑥 = 𝐶 (general integral) 
𝜋 

3) 𝑦 = 𝑒4
−𝑎𝑟𝑐𝑡𝑔𝑥 

4) +it follows that C takes only positive values. 

|𝑎2 − 𝑦2| = 𝑎2 − 𝑦2, 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑦2 < 𝑎2; 
 

 
2 - §. Basic definitions 

 

The differential equation is obtained as an equation connecting the argument 

or arguments, the unknown function and its derivatives; Even if initially there was 

a relationship between differentials, then you can move on to a relationship 

between derivatives. If the desired function depends on one argument, then the 
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differential equation is called ordinary; otherwise it is called a partial derivative 

equation. [8]. 

The highest order of the derivative of the search function included in the 

equation is called the order of this equation.Thus, equations (1) and (2) are of the 

first order, while the differential equation for the law of oscillations takes the form 

𝑀 
𝑑2𝑦 

+ 𝑘𝑦 = 0, 𝑦 = 𝑦(𝑡) = 1 (1) 
𝑑𝑡2 

looks like 

𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛)) = 0 (2) 

where 𝑦 = 𝑦 (𝑥) is the desired function. Of course, in this case, the function F 

may not actually depend on all the written values: equation (1) does not include an 

independent variable and a first-order derivative. 

The solution to a differential equation is a function that, when substituted 

into this equation, reverses its identity. 

For example, from the simplest equation 

𝑦′ = 𝑥2, 𝑦 = 𝑦(𝑥)  (3) we'll 

find it right away using integration 

𝑦 = 
𝑥3 

+ 𝐶 (4) 
3 

This is a general solution to equation (3); it includes an arbitrary constant 

and is a record of the whole variety of solutions. By giving an arbitrary constant 

specific numerical values, we obtain specific, particular solutions to equation (3); 

𝑦 = 
𝑥3 

, 𝑦 = 
𝑥3 

+ 6, 𝑦 = 
𝑥3 

− √
2

 𝑎𝑛𝑑 o the 
3 3 3 3 

In the general case (2), the solution is found as a result of n successive 

integrations, so that the general solution of an nth order equation contains n 

arbitrary constants, i.e. looks like 

 

𝑦 = 𝑦(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑛) (5) 

Especially often the general solution is obtained in an implicit form: 

 

Ф(𝑥, 𝑦; 𝐶1, 𝐶2, … , 𝐶𝑛) = 0 (6) 

 

Relations (5) and (6) are also called general integrals of equation (2). 

Particular solutions are obtained by giving each arbitrary constant a specific 

numerical value. The graph of each particular solution is called the integral line of 

the differential equation under consideration. The equation of this line is equation 

(5) and (6) specific 𝐶1, 𝐶2, … , 𝐶𝑛. 
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In order to isolate a one-part solution from a general solution, it is necessary, 

in addition to the differential equation, to set some additional conditions. Most 

often, initial conditions are set, which, when studying a process developing over 

time, are a mathematical record of the initial state of the process. 

For example, when considering the process of oscillation, that particular 

oscillation is completely determined if the initial deviation and the initial speed of 

the oscillating point are given. Therefore, the initial conditions for equation (2) 

have the form 

 

assigned 𝑡 = 𝑡 𝑦 = 𝑦 𝑎𝑛𝑑 
𝑑𝑦 

= 𝑣 (7) 
0 0 𝑑𝑡 0 

 
In general, for equation (2), the initial conditions have the following form: 

at (8) 𝑥 = 𝑥0,  𝑔𝑖𝑣𝑒𝑛 𝑦 = 𝑦0, 𝑦′ = (𝑦′)0, … , 𝑦(𝑛−1) = (𝑦(𝑛−1)) 

Since the general solution (6) contains n arbitrary, ton of imposed n relations 

are sufficient, in any case, in principle, to find these constants and thereby to find a 

particular solution. And it is physically natural that if the differential law governing 

the development of the process, as well as the initial state of this process, is known, 

then the process itself is completely determined. 

For a first-order equation (3), condition (8) means that for some value the 

value 𝑦 = 𝑦0 must be specified. Let, for example, it be required that 𝑦(1) = 2. 

Then from (4) we obtain х = х0 
13 5 

2 = + С, С = , 
3 3 

that is, the desired particular solution has the form 

 

у = 
х3+5

.
 

3 

 
The problem of finding a particular solution to a differential equation given 

an initial condition is called the Cauchy problem. 

 

3- §. First order differential equations 

 

First-order differential equationis called the relationship between the 

independent variable, the unknown function and its derivative.[9] 

1. The first order differential equation has the form 

 

𝐹(𝑥, 𝑦, 𝑦′) = 0 (1) 

0 
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If this equation can be resolved relative to', then it can be written in the form 

𝑦′ = 𝑓 (𝑥, 𝑦) (2) 

 

It is called a first order differential equation resolved with respect to the 

derivative. 

A first-order differential equation resolved with respect to the derivative can 

always be written in the so-called differential form: 

 

𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0 (3) 

Indeed, if 𝑦′ = 𝑓 (𝑥, 𝑦), 

That 𝑑𝑦 = 𝑓(𝑥, 𝑦), which means 
𝑑𝑥 

𝑓 (𝑥, 𝑦)𝑑𝑥 − 𝑑𝑦 = 0 

 
On the contrary, any equation of the form (3), if 𝑄(𝑥, 𝑦) ≠ 0, can be 

resolved with respect to the derivative: 
𝑑𝑦 

= − 
𝑃(𝑥,𝑦)

.
 

𝑑𝑥 𝑄(𝑥,𝑦) 

 
Let us clarify the geometric meaning of equation (2). 

Let xiy be the Cartesian rectangular coordinates of the points of the plane, 

and 𝑦 = 𝜑(𝑥) be the solution to this equation. The graph of this solution - the 

integral curve of equation (2) - is a continuous curve, at each point of which there 

is a tangent. The angular coefficient of the tangent integral curve of the point (𝑥, 𝑦) 

is equal to y′, that is, equal to 𝑓 (𝑥, 𝑦). The equation 

𝑦′ = 𝑓 (𝑥, 𝑦) gives the relationship between the coordinates of the point and the 

angular coefficient of the tangent integral curve at this point. 

At each point (x, y) of the region D in which the function is defined 

𝑓 (𝑥, 𝑦), we can calculate y′, that is, indicate the direction of the tangent to the 

integral curve that passes through this point. By constructing a line (“arrow”) at 

each point of the region, inclined along the axis OX at an angle tangent equal to 

𝑓 (𝑥, 𝑦), we obtain the so-called “field of directions” (Fig. 3). 
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(Fig.3) 

 

To set the equation 𝑦′ = 𝑓 (𝑥, 𝑦) means to set a direction field in the region 

D. Finding a solution to this equation means finding a curve whose tangent at each 

point coincides with the direction of the field at that point. 

There will be more than one such curve, but a whole family. To select a 

specific integral curve, you need to specify a point (𝑥0, 𝑦0) through which the 

curve should pass. Under certain restrictions on the right side of equation (2), one 

integral curve will pass through each point of region D. 

 

Example. Consider the equation  𝑦′ = 𝑥 + 𝑦. 
The function 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 is defined everywhere, therefore, the 

direction field for a given equation can be constructed in the entire plane. In order 

to organize the arrangement of field directions, we will use the isocline method. An 

isocline of a direction field is a geometric location of points at which the direction 

of the field is the same. 

Let us denote by α the angle of inclination of the axis OX the direction of the 

field: 𝑡𝑔𝛼 = 𝑦′. 

Isocline, at points of which  𝛼 = 0, 𝑖. 𝑒.  𝑦′ = 𝑡𝑔0 = 0, 
has the equation  𝑥 + 𝑦 = 0. 

Isocline, at points of which, i.e. 𝑦′ = 𝑡𝑔 
𝜋 

= √3 
, 𝛼 = 

𝜋
 has an equation 

 
 

√3 
𝑥 + 𝑦 = 

3 

6 3 6 

𝑒𝑡𝑐. 

In order to draw an integral curve given the direction field, you need to take 

any point (𝑥0, 𝑦0) on the 𝑋𝑂𝑌 plane as the starting point and draw through the line 

so that at each of its points it goes in the direction of the field. 

Note. In practice, the isocline method can be used to approximate the 

construction of the family of integral curves of equation (2). Moreover, the more 

isoclines are constructed, i.e., the “more densely” the field directions are indicated 
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on the drawing, the more accurately it is possible to draw the integral curves of the 

equation. 

The isocline method allows you to represent the relative position of the 

integral curves of the equation. 

An example can be clarified that the geometric interpretation of a first-order 

differential equation shows that a first-order differential equation of the form 

𝑦′ = 𝑓 (𝑥, 𝑦) has not one, but an infinite number of solutions. In order to select a 

specific solution from this countless set of solutions, you usually have to set the 

value of the desired function at 𝑦0 with some argument value 𝑥0. 

Definition. The pair 𝑥0, 𝑦0 are called initial conditions or initial data of the 

decision. Geometrically, specifying the initial conditions is equivalent to 

specifying the point (𝑥0, 𝑦0) – the “initial point” of the XOY plane. The solution 

𝑦0 = 𝜑(𝑥)  of the equation  𝑦′ = 𝑓 (𝑥, 𝑦) satisfies the initial conditions  𝑥0, 𝑦0, 

if, that is, if the graph of this 𝜑(х0) = у0 solution passes through the point  𝑥0, 

𝑦0. 

Finding a solution to the differential equation 𝑦′ = 𝑓(𝑥, 𝑦), satisfying the given 

initial conditions 𝑥0, 𝑦0, is one of the most important problems in the theory of 

differential equations. This problem is called the Cauchy problem. 

Cauchy's theorem. If the function 𝑓(𝑥, 𝑦) is continuous outside some 

region D of the XOY plane and has a continuous partial derivative poy in this 
region y, 𝑓′(𝑥, 𝑦), then whatever the point (𝑥 , 
𝑦 

) of the region D is, there exists, 

𝑦 0 0 

and moreover, a unique solution 𝑦 = 𝜑(𝑥) of the equation 𝑦′ = 𝑓(𝑥, 𝑦), defined 

within some interval containing the point 𝑥0 , receivingin 𝑥 = 𝑥0 value 

𝜑(𝑥0) = 𝑦0. 
 

(Fig.4) (Fig.5) 

 

Geometrically, this statement means that through each internal point (𝑥0,𝑦0) 

of the region D there passes, and only one, integral curve of the equation (Fig. 4). 
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From Cauchy's theorem it follows that in the domain D the equation 𝑦′ = 𝑓(𝑥, 𝑦) 

has an infinite number of solutions. Indeed, considering 0 constants, changing the 

value of 𝑥0 beyond certain limits, we obtain for each value of 𝑦0 our solution: 

𝑦 = 𝜑(𝑥, 𝑦0) (Fig. 5). 

Definition1.The function у = 𝜑 (𝑥, С), 𝑑epending on one arbitrary constant 

С, is called the general solution of the equation 

𝑦′ = 𝑓 (𝑥, 𝑦) outside a certain region if it is a solution to this equation for any 

value of the constant C and if any solution to the equation lying in the region can 

be written as 𝑦 = 𝜑(х, С) at a specific value C. 

Definition2. The equality Ф(𝑥, 𝑦, С) = 0, which implicitly specifies the 

general solution, is called the general integral of equation (1) in the domain𝜎. 
Definition3. Solutions obtained from the general one at certain values of the 

constant C are called particular solutions of this equation. Partial integrals are 

defined similarly. 

For such an equation the following theorem is valid, which is called the 

theorem on the existence and uniqueness of a solution to a differential equation. 

Theorem. If in Eq. 

𝑦′ = 𝑓 (𝑥, 𝑦) 
function f (x, y) and its partial derivative are continuous in some domain D on the 

Oxy plane containing some point (𝑥0; 𝑦0), then there is a unique solution to this 

equation 𝛛𝑓 
𝛛у 

𝑦 = 𝜑(𝑥) 

 

satisfying the condition 𝑦 = 𝑦0 𝑒𝑡𝑐 𝑥 = 𝑥0. 
Example 1. For a first-order equation 𝑑𝑦 = − 

у
, the general solution will be 

𝑑𝑥 х 

the family of functions 𝑦 = 
С 

; this can be verified by simply substituting into the 
х 

equation. 

Let us find a particular solution that satisfies the following initial condition: 

𝑦0 = 1 𝑥0 = 2. Substituting these values of 𝑥0 and 𝑦0 into the formula 

𝑦 = 𝐶, we get 1 = 
С 

х
 2 

or 𝐶 = 2. Consequently, the required partial solution 

will be the function 𝑦 = 
2 

. 
х 

From a geometric point of view, a general integral is a family of curves on 

the coordinate plane, depending on one arbitrary constant C. These curves are 

called integral curves of a given differential equation. 

2. Let us give a geometric interpretation of the first order differential equation. 

Let a differential equation be given that is resolved with respect to the derivative: 
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𝑑𝑦 = 𝑓 (𝑥, 𝑦) (2) 
𝑑𝑥 

 
and let 𝑦 = 𝜑(𝑥, С) be a general solution to this equation. This general solution 

defines a family of integral curves in the 𝑂𝑥𝑦 plane. 

Equation (2) for each point M with coordinates x and y determines the value 

of the derivative 𝑑𝑦, that is, the angular coefficient of the tangent to the integral 
𝑑𝑥 

curve passing through this point. Thus, differential equation (2) gives a set of 

directions or determines the field of directions on the Oxy plane. 

 

 

Try to decide for yourself [3] 

 

1. 𝑙𝑛𝑐𝑜𝑠𝑦𝑑𝑥 + 𝑥𝑡𝑔𝑦𝑑𝑦 = 0 solve equations. 

2. 𝑦𝑦′ + 𝑒𝑦 = 0, 𝑦(1) = 0 
𝑥 

3. (1 + 𝑒2𝑥)𝑦2𝑑𝑦 = 𝑒𝑥𝑑𝑥; 𝑦(0) = 0 

4. 𝑦′ + 𝑐𝑜𝑠(𝑥 + 2𝑦) = 𝑐𝑜𝑠(𝑥 – 2𝑦); 𝑦(0) = 
𝜋
 

4 

5. 𝑦′ = 2𝑥−𝑦; 𝑦(− 3) = − 5 

 
Answers.1) 𝑦 = 𝑎𝑟𝑐𝑐𝑜𝑠𝑒𝐶𝑥 

 
2) 2𝑒−𝑦(𝑦 + 1) = 𝑥2 + 1 

 

3) 𝑦
3

 

3 
+ 

𝜋 

4 
= 𝑎𝑟𝑐𝑡𝑔𝑒𝑥 

4) 𝑙𝑛|𝑡𝑔𝑦| = 4(1 − 𝑐𝑜𝑠𝑥) 
 

5) 2𝑥 − 2𝑦 = 
3

 
32 

 
4- §. First-order differential equations integrable by quadratures 

 

Let's consider some of the most important types of first-order differential 

equations, the integration of which is reduced to finding one or more indefinite 
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integrals. To avoid confusion with the term “integrating an equation,” we will call 

the action of calculating an indefinite integral a quadrature. [9] 

1. Equationsvida 𝒚′ = 𝒇(𝒙), where 𝑓(𝑥)– a function defined continuous 

over some interval of the  𝑎 < 𝑥 < 𝑏 O𝑋2 axis. 

All solutions to this simplest differential equation are exhausted by the relation 

𝑦 = ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶 (1) 

where C is an arbitrary constant. 

Geometrically, this means that all integral curves of the equation 

𝑦′ = 𝑓(𝑥) in the band {are obtained from one of them, for example, by a shift 

parallel to the axis of the OY. By specifying any point 𝑀0 (𝑥0, 𝑦0) in this band, 

one can uniquely determine the constant 𝐶0 so that the corresponding integral 

curve 

{𝑎 < 𝑥 < 𝑏, −∞ < 𝑦 < +∞} 𝑦 = ∫ 𝑓(𝑥)𝑑𝑥 

𝑦 = ∫ 𝑓(𝑥)𝑑𝑥 + С0 

passes through this point. 

Relationship (1) is a general solution to the equation 

𝑦′ = 𝑓(𝑥) in this strip. 

Example. The right side of the equation 𝑦′ = 3𝑥2 continuous in the interval 

−∞ < х < +∞. 

(Fig.6) 
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The general solution of the equation in the entire XOY plane has the form 

𝑦 = 𝑥3 + 𝐶, where C is an arbitrary constant. 

Let's find a particular solution that satisfies the initial conditions 

𝑥0 = 1, 𝑦0 = 3. For him 3 = 1 + 𝐶0, 𝐶0 = 2, 𝑖. 𝑒. 𝑦 = 𝑥3 + 2. Geometrically, 

this means that from the family of cubic parabolas 𝑦 = 𝑥3 + 𝐶, 

Representing the general solution of the equation, a parabola passing through the 

point (1, 3) is highlighted - a particular solution of the equation (Fig. 6). 

 

2. Equations with separated variables. 

Differential equation type 

 

𝑀(𝑥)𝑑𝑥 + 𝑁(𝑦)𝑑𝑦 = 0 (2) 

 

called an equation with separated variables. [1]. The general integral of what was 

proved is 

 

∫ 𝑀(𝑥)𝑑𝑥 + ∫ 𝑁(𝑦)𝑑𝑦 = 𝐶 (3) 

 

Example 1.Given an equation with separated variables 

𝑥𝑑𝑥 + 𝑦𝑑𝑦 = 0 

 
Integrating, we obtain the general integral: 

∫ 𝑥𝑑𝑥 + ∫ 𝑦𝑑𝑦 = 0 

𝑥2 

+ 
2 

𝑦2 

2 
= 𝐶1 

Since the left side of the last equality is non-negative, the right side is also 

not negative. Denoting 2𝐶1 by 𝐶2, we will have 

 

х2 + у2 = С2 

 
This is the equation of a family of concentric circles with the center at the 

beginning coordinate and radius C. 

3. Equations with separable variables. 

Differential equation of the form 

 

𝑀1(𝑥)𝑁1(𝑦)𝑑𝑥 + 𝑀2(𝑥)𝑁2(𝑦)𝑑𝑦 = 0 (4) 
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0 0 

0 

0 

called an equation with separable variables. It can be compared to a separated 

variable equation by dividing both sides by the expression 𝑁1(𝑦)𝑀2(𝑥): 

𝑀1(𝑥)𝑁1(𝑦) 𝑀2(𝑥)𝑁2(𝑦) 
𝑁 (𝑦)𝑀 (𝑥) 

𝑑𝑥 + 
𝑁 (𝑦)𝑀 𝑑𝑦 = 0 (𝑥) 

1 2 1 2 

or 
𝑀1(𝑥) 

𝑑𝑥 + 
𝑁2(𝑦) 

𝑑𝑦 = 0 (5) 
𝑀2(𝑥) 𝑁1(𝑦) 

 
that is, an equation of the form (2). 

Example 2.The equation 𝑦′ = 𝑥(𝑦2 + 1) is an equation with separable 

variables. The function  𝜑(𝑥) = 𝑥  and 𝜓(𝑦) = 𝑦2 + 1 is continuous 

everywhere, 

𝑦2 + 1 ≠ 0 
Solution. Separating Variables 

𝑑𝑦 

𝑦2 + 1 
= 𝑥𝑑𝑥 

integrating, we get:  

𝑎𝑟𝑐𝑡𝑔𝑦 = 
𝑥2 

+ 𝐶 (6) 
2 

the general integral of this equation throughout the 𝑋𝑂𝑌 plane. 

Resolving relation (6) with respect to y, we find a general solution to the 

equation in the form 

𝑥2 

𝑦 = 𝑡𝑔 ( 
2 

𝜋 
 

 

+ 𝐶) , − 
2 

𝑥2 

< 
2 

𝜋 
+ 𝐶 <  

2 

By specifying any initial conditions 𝑥0, 𝑦0, it is possible to determine 𝐶0 from 

relation (6): 

𝑎𝑟𝑐𝑡𝑔 𝑦  𝑥
2 

= + 𝐶 , 𝐶 = 𝑎𝑟𝑐𝑡𝑔 𝑦  𝑥
2 

− 
0 2 0 0 0 2 

and, therefore, determine the corresponding partial integral of this equation: 

 

 

and private solution: 

𝑎𝑟𝑐𝑡𝑔 𝑦 = 

 
𝑥2 

𝑥2 
 

 

2 
+ 𝑎𝑟𝑐𝑡𝑔 𝑦0 

 
𝑥2 

 𝑥
2 

− 
2 

𝑦 = 𝑡𝑔 ( 
2 

+ 𝑎𝑟𝑐𝑡𝑔𝑦 −  0). ■ 
2 

 
Example 3. Solve the equation 𝑥(𝑦2 − 4)𝑑𝑥 + 𝑦𝑑𝑦 = 0. 

Solution. Dividing the two sides of the equation na 𝑦2 − 4 ≠ 0, we have 
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Integrating, we find 

𝑥𝑑𝑥 + 
𝑦𝑑𝑦 

𝑦2 − 4 
= 0. 

𝑥2 + 𝑙𝑛|𝑦2 − 4| = 𝑙𝑛|𝐶| or 𝑦2 − 4 = 𝐶𝑒−𝑥
2

 

 
This is the general solution to this differential equation. 

Let's compare the equation to zero. From this,  𝑦2 − 4 = 0, 𝑦 = ±2 

By direct substitution we verify that 𝑦 = ±2 is a solution to the original 

equation. But it will not be a special solution, since it can be obtained from the 

general solution at C = 0. ■ 

Example 4. The equation is given 𝑑 
𝑑𝑥 

= − 
у

 
х 

Solution. We separate the variables: 𝑑𝑦 = − 
𝑑𝑥

 

Integrating, we find 

𝑦 𝑥 

∫ 
𝑑𝑦 

= − ∫ 
𝑑𝑥 

+ 𝐶, 

that is, 

𝑦 𝑥 

ln|𝑦| = −𝑙𝑛|𝑥| + 𝑙𝑛|𝐶| 𝑎𝑛𝑑 |𝑦| = 𝑙𝑛 |
𝐶
| 

𝑥 

from here we get the general solution: 𝑦 = 
С 

. ■ 
х 

Example 5. Given the equation (1 + 𝑥)𝑦𝑑𝑥 + (1 − 𝑦)𝑥𝑑𝑥 = 0. 
Solution.Separating the variables, we find 

1 + 𝑥 
 

 

𝑥 
1 

𝑑𝑥 + 
1 − 𝑦 

𝑦 
1 

𝑑𝑦 = 0, 

 
Integrating, we get 

(  + 1) 𝑑𝑥 + ( 
𝑥 𝑦 

− 1) 𝑑𝑦 = 0 

𝑙𝑛|𝑥| + 𝑥 + 𝑙𝑛|𝑦| − 𝑦 = 𝐶 𝑎𝑛𝑑 |х| + 𝑥 − 𝑦 = 𝐶; 

 
The last relation is the general integral of this equation. 

 

Example 6. Find a partial solution to the differential equation 

(1 + 𝑥2)𝑑𝑦 + 𝑦𝑑𝑥 = 0 initial condition 𝑦(1) = 1. 
Solution. Let's transform this equation to the form 

𝑑𝑦 𝑑𝑥 

 
Integrating, we get 

𝑦 
= − 

1 + 𝑥2 
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∫ 
𝑑𝑦 

= − ∫ 
𝑑𝑥 or 𝑙𝑛|𝑦| = −𝑎𝑟𝑐𝑡𝑔𝑥 + 𝐶 

𝑦 1+𝑥2 

 
This is the general integral of this equation. 

We use the initial conditions and find an arbitrary constant C; we have 

𝑙𝑛1 = − 𝑎𝑟𝑐𝑡𝑔1 + 𝐶 
𝜋 

 

𝐶 =  
4 

𝜋 
𝑙𝑛 𝑦 = − 𝑎𝑟𝑐𝑡𝑔 𝑥 +  

4 
we obtain the desired particular solution 

 

 
𝜋 

𝑦 = 𝑒4
−𝑎𝑟𝑐𝑡𝑔𝑥. ■ 

 

Try to decide for yourself [3]. 

 

1. 𝑦′ + 𝑠𝑖𝑛(𝑥 + 𝑦) = 𝑠𝑖𝑛(𝑥𝑦) 

 
2. 𝑦𝑦′ = −2𝑥 𝑠𝑒𝑐 𝑦 

 
3. 𝑦′ = 𝑒𝑥+𝑦 + 𝑒𝑥−𝑦; 𝑦(0) = 0 

 
4. 𝑦′ = 𝑠ℎ(𝑥 + 𝑦) + 𝑠ℎ(𝑥 − 𝑦) 

 

5. 𝑦′ = √
𝑎2−𝑦2

 
𝑎2−𝑥2 

 
Answers. 

1) 2𝑠𝑖𝑛𝑥 + 𝑙𝑛 |𝑡𝑔 
𝑦
| = 𝐶 

2 

 
2) 𝑥2 + 𝑦𝑠𝑖𝑛𝑦 + 𝑐𝑜𝑠𝑦 = 𝐶 

 

3) 𝑦 = 𝑙𝑛𝑡𝑔 (𝑒𝑥 + 
𝜋 

4 
− 1) 

 
4) 𝑦 = 𝑙𝑛𝑡𝑔(𝑐ℎ𝑥 + 𝐶) 

 

5) 𝑦 = 𝑎𝑠𝑖𝑛 (𝑎𝑟𝑐𝑠𝑖𝑛 
𝑥
 
𝑎 

+ 𝐶) ; 
 

 
 

the answer can also be written in the form 𝑦√𝑎2 − 𝑥2 − 𝑥√𝑎2 − 𝑦2 = 𝐶1
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5- §. Homogeneous equations of the first order 

 

Definition 1.The function 𝑓(𝑥, 𝑦) is called a homogeneous function of the 

nth dimension with respect to the 𝑥𝑦 variables, if for any 𝝀  the identity is true 

[9] 

𝑓(𝜆𝑥, 𝜆𝑦) = 𝜆𝑛𝑓(𝑥, 𝑦) (1) 

 

For example, 𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑥2𝑦 is a homogeneous function of the 

third dimension relative to 𝑥𝑦, since 

 

𝑓(𝑡𝑥, 𝑡𝑦) = (𝑡𝑥)3 + 3(𝑡𝑥)2(𝑡𝑦) = 𝑡3(𝑥3 + 3𝑥2𝑦) = 𝑡3𝑓(𝑥, 𝑦) 
Functions 

𝑓(𝑥, 𝑦) = 
𝑥3+𝑦3

 , 𝜑(𝑥, 𝑦) = 
𝑥−𝑦

 , 𝜓(𝑥, 𝑦) = 
𝑥3 

+ 𝑦3𝑙𝑛 
𝑥

 

𝑥2+𝑥𝑦+𝑦2 𝑥+2𝑦 𝑦 𝑦 

 
are homogeneous functions of the first, zero and second dimensions, respectively. 

The functions, , are not homogeneous, since for them conditions (1) are not 

satisfied at any time 

х3 − 3х2у + у ,  𝑒𝑥−𝑦 + 2 , 
𝑥 

𝑥𝑠𝑖𝑛 
𝑦 

+ 𝑥2 

Homogeneous functions have the following properties: 

1. The sum of homogeneous functions of the same dimension is a 

homogeneous function of the same dimension. 

2. The product of a homogeneous function is a homogeneous function whose 

dimension is equal to the sum of the dimensions of the factors. 

3. The quotient of homogeneous functions is a homogeneous function. Its 

measurement is equal to the difference between the dimensions of the dividend and 

the divisor. 
 

 

Example 1. Function 𝑓(𝑥, 𝑦) = 3√𝑥 3 + 𝑦3 
the first dimension, since [1] 

is a homogeneous function of 

𝑓(𝑡𝑥, 𝑡𝑦)  
= 

 
 

3√(𝑡𝑥)3 + (𝑡𝑦)3 = 𝑡 
3
√𝑥 3 + 𝑦3 =  𝑡𝑓(𝑥, 𝑦). 

 
Example 2. 𝑓(𝑥𝑦) = 𝑥𝑦 – 𝑦2 is a homogeneous function of the second 

dimension, since 
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(𝑡𝑥)(𝑡𝑦) – (𝑡𝑦)2 = 𝑡2 (𝑥𝑦 − у2) 
 

Example 3. 𝑓(𝑥, 𝑦) =  
𝑥2−𝑦2

 

𝑥𝑦 
is a homogeneous function of zero 

dimension, since 
 

(𝑡х)2−(𝑡у)2 

= 
х2−у2 

that is 

(𝑡х)(𝑡у) ху 

𝑓(𝑡𝑥, 𝑡𝑦) = 𝑓(𝑥, 𝑦) 𝑜𝑟  𝑓(𝑡𝑥, 𝑡𝑦) = 𝑡0𝑓(𝑥, 𝑦). 

 
Definition 2. First order equation [1] 

𝑑𝑦 
 

𝑑𝑥 
= 𝑓(𝑥, 𝑦) (2) 

is called homogeneous relative 𝑥 and 𝑦 if the function 𝑓 (𝑥, 𝑦)is a 

homogeneous function of zero dimension relative 𝑥 and 𝑦. 

Any equation of the form will also be homogeneous: [9] 

𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0, 

where 𝑃(𝑥, 𝑦) 𝑎𝑛𝑑 𝑄(𝑥, 𝑦) are homogeneous functions of the same dimension. 

Resolving the equation with respect to y′ (or′). 

Integrating a homogeneous equation 

 

𝑦′ = 𝑓(𝑥, 𝑦) (2′) 

 

Using a special substitution, it is reduced to the integration of an equation with 

separable variables. 

Indeed, 𝑓(𝑥, 𝑦) is a homogeneous function of the zero dimension, then for 

any t  

𝑓(𝑡𝑥, 𝑡𝑦) = 𝑓(𝑥, 𝑦). 
 

Putting in this identity 𝑡 = 
1 

,we get 
х 

𝑦 
𝑓 (𝑥, 𝑦) = 𝑓 (1,  ), 

𝑥 

This means that the right side of equation (4) actually depends on one 

argument у - the relationship: 
х 

 

𝑓(𝑥, 𝑦) 
𝑦 

= 𝜑 ( ) 
𝑥 

(3) 

 

i.e. equation (3) can be written as: 
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𝑑𝑦 = 𝑓(1, 
𝑦 

) (4) 
𝑑𝑥 𝑥 

 
Enter a new unknown function u using the substitution 𝑦 = 𝑢𝑥, 

Instead of (3), we obtain the equation 𝑢 = 
𝑦

 
𝑥 

 

 
or, also, the equation 

𝑢′𝑥 + 𝑢 = 𝜑 (𝑢) 

𝑢′ = 
𝜑(𝑢)− 𝑢 

𝑥 
(5) 

 

This is an equation with separable variables for an unknown function u. 

Suppose that the function 𝜑(𝑢) is continuous on the interval 𝑎 < 𝑢 < 𝑏 
and 𝜑(𝑢) − 𝑢 ≠ 0. 

Separating the variables in equation (5) and integrating, we find the general 

integrals of this equation in the areas {𝑎 < 𝑢 < 𝑏, 𝑥 > 0} and 

{𝑎 < 𝑢 < 𝑏, 𝑥 < 0} in the form: 
𝑑𝑢 

∫ 
𝜑(𝑢) − 𝑢 

= ∫
 

𝑑𝑥 
+ С 

𝑥 

where C is an arbitrary constant. 

By replacing the auxiliary function u with its expression through x and y, we 

find in quadratures the general integrals of this equation in the areas 

{𝑎 < 
𝑦 

< 𝑏, 𝑥 > 0} 𝑎𝑛𝑑 {𝑎 < 
𝑦 

< 𝑏, 𝑥 < 0} (fig. 7) 
𝑥 𝑥 
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(Fig. 7) 

 

 

Solution of a homogeneous equation. 

Condition 𝑓(𝜆𝑥, 𝜆𝑦) = 𝑓(𝑥, 𝑦). Putting in this identity we get 𝜆 = 
1

 
х 

𝑦 
𝑓 (𝑥, 𝑦) = 𝑓 (1,  ) 

𝑥 

that is, a homogeneous zero-dimension function depends only on the relationship 

of the arguments. 

The equation 

 

 

in this case it will take the form 

𝑑
𝑦 

 
 

𝑑𝑥 

𝑑𝑦 
 

 

𝑑𝑥 

= 𝑓(𝑥, 𝑦) 

 
у 

= 𝑓(1,  ) 
х 

Let's make the substitution 𝑢 = 
𝑦
, that is, 𝑦 = 𝑢𝑥. 
𝑥 

Then we will have 
 

𝑑𝑦 
= 𝑢 

𝑑𝑢 
𝑥 .

 
𝑑𝑥 𝑑𝑥 

 
Substituting this derivative expression into equation (2), we get 

𝑑𝑢 
𝑢 + 𝑥 

 
 

𝑑𝑥 
= 𝑓 (1, 𝑢) 

This is a separable equation: 
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𝑥 
𝑑𝑢 

= 𝑓(1, 𝑢) 𝑎𝑛𝑑 
𝑑𝑢
 = 

𝑑𝑥 

𝑑𝑥 𝑓(1,𝑢)−𝑢 𝑥 

 

integrating, we find  
𝑑𝑢 

∫ 
𝑓(1, 𝑢) − 𝑢 

= ∫
 

 
𝑑𝑥 

+ С 
𝑥 

Substituting the relation instead of u after integrationу, we obtain the integral 
х 

of equation (4) 

Example 4. Given equation 𝑑𝑦 = 
ху

 

 
. On the right is the homogeneous function 

𝑑𝑥 х2−у2 

of the zero dimension; therefore, we have a homogeneous equation. Making a 

replacement 
𝑦 = 𝑢; then 𝑦 = 𝑢𝑥 , 

𝑑𝑦 
= 𝑢 + 𝑥 

𝑑𝑢
 

𝑥 𝑑𝑥 𝑑𝑥 

 

𝑑𝑢 𝑢 𝑑𝑢 𝑢3 

𝑢 + = 
𝑑𝑥 1 − 𝑢2 

, 𝑥 
𝑑𝑥 

=
 

 
 

1 − 𝑢2 

Separating the variables, we will have 

 

(1− 𝑢2)𝑑𝑢 
= 

𝑑𝑥
, ( 

1 1 𝑑𝑥 

𝑢3 𝑥 𝑢3 − 
)𝑑𝑢 = 

𝑢 𝑥 

from here, integrating, we find 

 

1 
− 

2𝑢2 − 𝑙𝑛|𝑢| = 𝑙𝑛|𝑥| + ln|𝐶| 𝑜𝑟 
1 

2𝑢2 = 𝑙𝑛|𝑢𝑥𝐶| 

Substituting 𝑢 = 
𝑦
, we obtain the general integral of the original equation: 
𝑥 

х2 

− 
2у2 = 𝑙𝑛|𝐶𝑦| 

In this case, it is impossible to obtain an explicit function otx written using 

elementary functions. However, it is easy to express it here: 

𝑥 = 𝑦√−2𝑙𝑛|𝐶𝑦|. ■ 

An equation of the form 

(𝑥, 𝑦) 𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 
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will be homogeneous only if 𝑀(𝑥, 𝑦) 𝑎𝑛𝑑 𝑁(𝑥, 𝑦) are homogeneous functions of 

the same dimension. This follows from the fact that the ratio of two homogeneous 

functions of the same dimension is a homogeneous function of the zero dimension. 

Example 5. Equations 

(2𝑥 + 3𝑦)𝑑𝑥 + (𝑥 – 2𝑦)𝑑𝑦 = 0, (𝑥2 + 𝑦2 )𝑑𝑥 – 2𝑥𝑦𝑑𝑦 = 0 
 

are homogeneous. 

Example 6. The equation is homogeneous. Function 𝑦′ = 
𝑦
 

𝑥 

 

(𝑙𝑛 
𝑦
 
𝑥 

 
+ 1) 

 

𝑓(𝑥, 𝑦) = 
𝑦 𝑦 

 (𝑙𝑛 
𝑥 𝑥 

+ 1) 

defined in the region {𝑥 < 0, 𝑦 < 0} 𝑎𝑛𝑑 {𝑥 > 0, 𝑦 > 0} (𝑡ℎ𝑒𝑟𝑒 
у > 0, 𝑖. 𝑒. 𝑙𝑛 

у 
makes sense). 

х х 

We believe 𝑦 = 𝑢, 𝑦 = 𝑢𝑥. Moreover 
𝑥 

𝑦′ = 𝑢′𝑥 + 𝑢, 𝑢′𝑥 + 𝑢 = 𝑢 (𝑙𝑛𝑢 + 1) 

 
𝑢′𝑥 = 𝑢𝑙𝑛𝑢 

 
- equation with separable variables with respect to u. Solving it in the regions 

{𝑢 > 0, 𝑥 > 0} 𝑎𝑛𝑑 {𝑢 > 0, 𝑥 < 0}, we get: 

 

𝑑𝑢 
 

𝑢𝑙𝑛𝑢 
= 

𝑑𝑥
,
 

𝑥 

𝑙𝑛|𝑙𝑛𝑢| = 𝑙𝑛|𝑥| + 𝑙𝑛|𝐶|, 𝐶 ≠ 0, 

 
𝑙𝑛𝑢 = 𝐶𝑥, 𝑢 = 𝑒𝐶𝑥 

Substituting 𝑢 = 
𝑦
, we find 𝑦 = 𝑒𝐶𝑥, 𝑦 = 𝑥𝑒𝐶𝑥 the set of solutions to 
𝑥 𝑥 

this equation. Here C is any non-zero number.When separating the variables 𝑢 = 
1, i.e., the solution is lost: 

𝑦 = 𝑥. 

Since it can be obtained in the 𝑦 = 𝑥𝑒𝐶𝑥 form of 𝐶 = 0, we conclude 

that, where C is any number, is the general solution of this equation in the regions 

{𝑥 > 0, 𝑦 > 0} 𝑎𝑛𝑑 {𝑥 < 0, 𝑦 < 0}.■ 

 

Try to decide for yourself [3] 
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1. Find the general integral of the equation (𝑥2 + 2𝑥𝑦)𝑑𝑥 + 𝑥𝑦𝑑𝑦 = 0. 
2. Find a particular solution to the equation 𝑦′ = 

𝑦 
+ 𝑠𝑖𝑛 

𝑦
 under the initial 

condition 𝑦 (1) = 
𝜋

 
2 

𝑦 𝑦 

𝑥 𝑥 

3. 𝑥𝑦′ 𝑠𝑖𝑛 
𝑥 

+ 𝑥 = 𝑦𝑠𝑖𝑛  
𝑥 

4. 𝑥𝑦 + 𝑦2 = (2𝑥2 + 𝑥𝑦)𝑦′ 
5. 𝑥𝑦′ 𝑙𝑛 

𝑦
 
𝑥 

= 𝑥 + 𝑦 𝑙𝑛 
𝑦

 
𝑥 

6. 𝑥𝑦𝑦′ = 𝑦2 + 2𝑥2 

7. 𝑥𝑦′ − 𝑦 = 𝑥𝑡𝑔 
𝑦 

; 𝑦(1) = 
𝜋
 

𝑥 2 

8. (𝑥2 + 𝑦2)𝑑𝑥 − 𝑥𝑦𝑑𝑦 = 0 

9. 𝑦′ = 
𝑥+𝑦

 
𝑥−𝑦 

10. 𝑥𝑦′ = 2(𝑦 − √𝑥𝑦) 

Answers.1) 𝑙𝑛|𝑥 + 𝑦| +  
𝑥

 
𝑥+𝑦 

= 𝐶 

2) 𝑦 = 2𝑥𝑎𝑟𝑐𝑡𝑔𝑥 
𝑐𝑜𝑠

 𝑦
 

3) 𝐶𝑥 = 𝑒 𝑥 
𝑦 

4) 𝑦2 = 𝐶𝑥𝑒−𝑥 

5) 𝑙𝑛𝑥 = 
𝑦 𝑦 

 [𝑙𝑛 
𝑥 𝑥 

− 1] + 𝐶 

6) 𝑦2 = 4𝑥2𝑙𝑛𝐶𝑥 

7) 𝑦 = 𝑥𝑎𝑟𝑐𝑠𝑖𝑛𝑥 

8) 𝑦2 = 𝑥2𝑙𝑛𝐶𝑥2 

9) 𝑎𝑟𝑐𝑡𝑔 
𝑦
 
𝑥 

= 𝑙𝑛𝐶√𝑥2 + 𝑦2 

10) 16𝑥𝑦 = (𝑦 + 4𝑥 − 𝐶𝑥2)2 

6 - §. Equations reduced to homogeneous 

 

Similar equations are represented by equations of the form 

 

𝑑𝑦 
= 

𝑎𝑥+𝑏𝑦+𝑐 (1) 
𝑑𝑥 𝑎1𝑥+𝑏1𝑦+𝑐1 

 
If 𝑐1 = c = 0, then equation (1) is obviously homogeneous. Let now 𝑐1 (or 

one of them) be different from zero. [1]. Let's make a replacement of variables 

 

 

Then 

𝑥 = 𝑥1 + ℎ, 𝑦 = 𝑦1 + 𝑘 (2) 

 
𝑑𝑦 

= 
𝑑у1 

𝑑𝑥 𝑑х1 
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Substituting in equation (1) expressions 𝑥, 𝑦, we will have 𝑑𝑦 
𝑑𝑥 

 

𝑑у1 = 
  𝑎𝑥1+𝑏𝑦1+𝑎ℎ+𝑏𝑘+𝑐  (3) 

𝑑х1 𝑎1𝑥1+𝑏1𝑦1+𝑎1ℎ+𝑏1𝑘+𝑐1 

 

Let us choose hk so that the equalities are satisfied 

 

{ 
𝑎ℎ + 𝑏𝑘 + 𝑐 = 0 

𝑎1ℎ + 𝑏1𝑘 + 𝑐1 = 0 

 

 
(4) 

 

that is, we define hik as solutions to the system of equations (4). Under this 

condition, equation (3) becomes homogeneous: 

 
𝑑у1 

= 
𝑎𝑥1 + 𝑏𝑦1 

𝑑х1 𝑎1𝑥1 + 𝑏1𝑦1 

 
Having solved this equation and passing again using formulas (2), we obtain 

a solution to equation (1). 

System (4) has no solution if 

 

| 
𝑎 𝑏 

| = 0 
𝑎1 𝑏1 

 
that is, 𝑎𝑏1 = 𝑎1b. But in this case 
𝑎1 = 

𝑏1 = 𝝀  that is, and therefore, equation (1) can be transformed into the form 
𝑎 𝑏 

𝑎1 = 𝜆𝑎 , 𝑏1 = 𝜆𝑏 
 

𝑑𝑦 
=  

(𝑎𝑥+𝑏𝑦)+с (5) 
𝑑𝑥 𝜆(𝑎𝑥+𝑏𝑦)+𝑐1 

 
Then by substitution 

𝑧 = 𝑎𝑥 + 𝑏𝑦 (6) 

 

the equation is reduced to an equation with separable variables. 

Really, 

 

 

where 

𝑑𝑧 
 

 

𝑑𝑥 
= 𝑎 + 𝑏 

𝑑𝑦 
 

 

𝑑𝑥 
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𝑑𝑦 
= 

1 𝑑𝑦 
− 

𝑎 (7) 
𝑑𝑥 𝑏 𝑑𝑥 𝑏 

Substituting expressions (6) and (7) into equation (5), we obtain 

 

1 𝑑𝑧 𝑎 
 −  = 

𝑏 𝑑𝑥 𝑏 

𝑧 + 𝑐 
 

 

𝜆𝑧 + 𝑐1 

and this is an equation with separable variables. 

The technique applied to the integration of equation (1) is applied to the 

integration of the equation 

 

𝑑𝑦 
 

 

𝑑𝑥 
= 𝑓 ( 

𝑎𝑥 + 𝑏𝑦 + 𝑐 
) 

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1 
 

where f is any continuous function. 

Example 1.Given equation 
𝑑𝑦 

= 
𝑑𝑥 

 

 
х + у − 3 х 

− у − 1 

To transform its hydrogen equation, we make the substitution 

𝑥 = 𝑥1 + ℎ , 𝑦 = 𝑦1 + 𝑘. Then 

 
𝑑𝑦1 

= 
𝑥1 + 𝑦1 + ℎ + 𝑘 − 3 

𝑑𝑥1 𝑥1 − 𝑦1 + ℎ − 𝑘 − 1 

 
Solving a system of two equations 

ℎ + 𝑘 − 3 = 0 
{ 
ℎ − 𝑘 − 1 = 0 

 

we find  

ℎ = 2, 𝑘 = 1 
As a result, we obtain a homogeneous equation 

 
𝑑𝑦1 

= 
𝑥1 + 𝑦1 

𝑑𝑥1 𝑥1 − 𝑦1 
 

which we solve by substitution 

 

 

Then 

 

у1 
= 𝑢; 

х1 
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1 

𝑦  = 𝑢𝑥 , 
𝑑𝑦1 = 𝑢 + 𝑥 𝑑𝑢 

,
 

1 1 𝑑𝑥1
 1 𝑑𝑥1 

 

𝑑𝑢 
𝑢 + 𝑥1 

𝑑𝑥  
= 

1 + 𝑢 
 

 

1 − 𝑢 

 
and we get an equation with separable variables 

 

 

Separate variables: 

𝑑𝑢 
𝑥1 𝑑𝑥 

1 + 𝑢2 
= 

1 − 𝑢 

 

 
Integrating, we find 

1 − 𝑢 
 

 

1 + 𝑢2 
𝑑𝑢 = 

𝑑𝑥1
 

𝑥1 

 

𝑎𝑟𝑐𝑡𝑔𝑢 − 
1 

𝑙𝑛(1 + 𝑢2) = 𝑙𝑛|𝑥 | + 𝑙𝑛|𝐶| 
 

2 1 

 

𝑎𝑟𝑐𝑡𝑔 𝑢 = 𝑙𝑛 |𝐶𝑥1√1 + 𝑢2| 

or 
 

𝐶𝑥1√1 + 𝑢2 = е𝑎𝑟𝑐𝑡𝑔𝑢 

 

Substituting here instead of 𝑢, we get у1 
х1 

2 2  𝑎𝑟𝑐𝑡𝑔
𝑦1 

𝐶 = √х1 + у1 е 𝑥1 

Finally, passing to the xand y variables, we finally get 

 

𝐶√(х − 2)2 + (у − 1)2 = 𝑒 
𝑎𝑟𝑐𝑡𝑔

𝑦−1
 

𝑥−2 

 

Example 2. The equation 
 

𝑦′ = 

 
2𝑥 + 𝑦 − 1 

 
 

4𝑥 + 2𝑦 + 5 

 
it is no longer possible to solve by substituting 𝑥 = 𝑥1 + ℎ, 𝑦 = 𝑦1 + 𝑘, 
since in this case the system of equations used to determine h and k is unsolvable 

2 1 
(here the determinant of the coefficients | 

4 2 
|of the variables is equal to zero). 

This equation can be reduced to an equation with separable variables by 

replacing 

1 
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2𝑥 + 𝑦 = 𝑧. 

 
Then 𝑦′ = 𝑧′ − 2, and the equation is reduced to the form 

 

𝑧′ − 2 = 

or 

𝑧 − 1 
 

 

2𝑧 + 5 

 

 
Solving it, we will find 

2 

𝑧′ = 

 
7 

5𝑧 + 9 
 

 

2𝑧 + 5 

 
 

 𝑧 + 
5 

𝑙𝑛|5𝑧 + 9| = 𝑥 + 𝐶 
25 

Since 𝑧 = 2𝑥 + 𝑦 , we will finally obtain a solution to the original 

equation in the form 

 

2 
 

 (2х + у) + 
5 

7 
𝑙𝑛|5(2х + у) + 9| = 𝑥 + 𝐶 

25 
 

2 
 

 (2х + у) + 
5 

or 

7 
𝑙𝑛|10х + 5у + 9| = 𝑥 + 𝐶 

25 

10у – 5х + 7 𝑙𝑛|10𝑥 + 5𝑦 + 9| = 𝐶1 

 
that is, in the form of an implicit function uotx. 

 

Try to decide for yourself [3] 

 

1. Find the general integral of the equation  

(2𝑥 + 𝑦 + 1)𝑑𝑥 + (𝑥 + 2𝑦 – 1)𝑑𝑦 = 0 

2. Find the general integral of the equation 

(𝑥 + 𝑦 + 2)𝑑𝑥 + (2𝑥 + 2𝑦 – 1)𝑑𝑦 
 

= 
 

0 

3. 2(𝑥 + 𝑦) 𝑑𝑦 + (3𝑥 + 3𝑦 – 1)𝑑𝑥 = 0 
 

4. (𝑥 – 2𝑦 + 3)𝑑𝑦 + (2𝑥 + 𝑦 – 1)𝑑𝑥 = 0 

5. (𝑥 – 𝑦 + 4)𝑑𝑦 + (𝑥 + 𝑦 – 2) 𝑑𝑥 = 0 
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Answers. 

1) 𝑥2 + 𝑦2 + 𝑥𝑦 + 𝑥 − 𝑦 = 𝐶1 , (it′s supposed to be here С1 = С2 − 1) 
 

2) 𝑥 + 2𝑦 + 5𝑙𝑛|𝑥 + 𝑦 − 3| = 𝐶 
 

3) 3𝑥 + 2𝑦 − 4 + 2𝑙𝑛|𝑥 + 𝑦 − 1| = 0 

 
4) 𝑥2 + 𝑥𝑦 − 𝑦2 − 𝑥 + 3𝑦 = 𝐶 

 
5) 𝑥2 + 2𝑥𝑦 − 𝑦2 − 4𝑥 + 8𝑦 = 𝐶 

 
7 - §. Bernoulli equation 

 

Consider an equation of the form [1] 

 
𝑑𝑦 + 𝑃(𝑥)𝑦 = 𝑄(𝑥)𝑦𝑛 (1) 
𝑑𝑥 

 
where P(x) and Q(x) are continuous functions of otx (or constants), and 

𝑛 ≠ 0 𝑎𝑛𝑑 𝑛 ≠ 1 (otherwise the result was a linear equation). This equation, 

called the Bernoulli equation, is reduced to linear by the following transformation. 

Dividing all terms of the equation by, we get𝑦𝑛 
 

𝑦−𝑛 
𝑑𝑦 

+ 𝑃𝑦−𝑛+1 = 𝑄 (2) 
𝑑𝑥 

 
Let us next make the replacement 𝑧 =  𝑦−𝑛+1 
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Then  
𝑑𝑧 

= (−𝑛 + 1)𝑦−𝑛 
𝑑𝑦

 
𝑑𝑥 𝑑𝑥 

Substituting these values into equation (2), we will have the linear equation 
𝑑𝑧 

 
 

𝑑𝑥 
+ (−𝑛 + 1)𝑃𝑧 = (−𝑛 + 1)𝑄 

Having found its general integral and substituting the expression for 

𝑧𝑦−𝑛+1, we obtain the general integral of the Bernoulli equation. 

Example 1. Solve equation 𝑑𝑦 + 𝑥𝑦 = 𝑥3𝑦3 (3) 
𝑑𝑥 

Solution. Dividing all terms by, we get у3 

 
𝑦−3 y′ + x𝑦−2 = 𝑥3 (4) 

 

Let's introduce a new function 𝑧 = 𝑦−2; then 
𝑑𝑧 

= −2у−3 
𝑑𝑦

 
𝑑𝑥 𝑑𝑥 

Substituting these values into equation (4), we obtain the linear equation 
𝑑𝑧 

− 2𝑥𝑧 = −2𝑥3 
𝑑𝑥 

 

Let us find the general integral: 

𝑧 = 𝑢𝑣, 
𝑑𝑧

 

 

= 𝑢 
𝑑𝑣 

+ 𝑣 
𝑑𝑢 

𝑑𝑥 𝑑𝑥 𝑑𝑥 

 

We substitute expressions  𝑧  and 𝑑 
𝑑𝑥 

into equation (5): 

 

𝑢 
𝑑𝑣 

+ 𝑣 
𝑑𝑢 

− 2𝑥𝑢𝑣 = − 2𝑥3 
𝑑𝑥 

or 
𝑑𝑥 

𝑢 ( 
𝑑𝑣 

− 2𝑥𝑣) + 𝑣 
𝑑𝑢 

= − 2𝑥3 
𝑑𝑥 𝑑𝑥 

We equate the expression in parentheses to zero: 

 

𝑑𝑣 
 

 

𝑑𝑥 
− 2𝑥𝑣 = 0, 

𝑑
𝑣 

 
 

𝑣 

= 2𝑥𝑑𝑥 

𝑙𝑛|𝑣| = 𝑥2 , 𝑣 = 𝑒𝑥
2

 



39 
 

to determine u we obtain the equation 

 

𝑒𝑥
2 𝑑𝑢 

= −2х3 
𝑑𝑥 

Separate variables: 

 

𝑑𝑢 = − 2𝑒−𝑥
2 
𝑥3𝑑𝑥 ,  𝑢 = −2 ∫ 𝑒−𝑥

2 
𝑥3𝑑𝑥 + 𝐶 

 
integrating by parts, we find 

 

𝑢 = 𝑥2𝑒−𝑥
2 

+ 𝑒−𝑥
2 

+ 𝐶, 𝑧 = 𝑢𝑣 = 𝑥2 + 1 + 𝐶𝑒𝑥
2

 

 
Therefore, the general integral of this equation is 

 

𝑦−2 = 𝑥2 + 1 + 𝐶𝑒𝑥
2

 

or 

𝑦 = 
1 

. ■ 
√х2+1+Сех2

 

Example 2. Integrate equation 𝑦′𝑐𝑜𝑠2𝑥 + 𝑦 = 𝑡𝑔𝑥 initial condition 

𝑦(0) = 0. 
Solution. We integrate the corresponding homogeneous equation 

𝑦′𝑐𝑜𝑠2𝑥 + 𝑦 = 0; 

 
dividing the variables, we get 

 

𝑑𝑦 𝑑𝑥 
+ = 0, 𝑙𝑛𝑦 + 𝑡𝑔𝑥 = 𝑙𝑛𝐶, 𝑦 = 𝐶𝑒−𝑡𝑔𝑥 

𝑦 𝑐𝑜𝑠2𝑥 
 

 
form 

We are looking for a solution to the original inhomogeneous equation in the 

 

𝑦 = 𝐶(х)𝑒−𝑡𝑔𝑥, 

 
where C(x) is an unknown function. Substituting the original equation 

 

𝑦 = 𝐶(х)𝑒−𝑡𝑔𝑥 
and 
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𝑦′ = 𝐶′(х)𝑒−𝑡𝑔𝑥 − 𝐶(х)𝑒−𝑡𝑔𝑥𝑠𝑒𝑐2𝑥 

 
let's come to the equation 

 

or 

where 

𝑐𝑜𝑠2𝑥𝐶′𝑒−𝑡𝑔𝑥 − 𝐶(𝑥)𝑒−𝑡𝑔𝑥𝑠𝑒𝑐2𝑥𝑐𝑜𝑠2𝑥 + 𝐶(𝑥)𝑒−𝑡𝑔𝑥 = 𝑡𝑔𝑥 

 
𝐶′(𝑥)𝑐𝑜𝑠2(𝑥)𝑒−𝑡𝑔𝑥 = 𝑡𝑔𝑥 

 
𝑒𝑡𝑔𝑥𝑡𝑔𝑥 

𝐶(𝑥) = ∫ 
𝑐𝑜𝑠2𝑥 

𝑑𝑥 = 𝑒𝑡𝑔𝑥(𝑡𝑔𝑥 − 1) + 𝐶 

 
We obtain a general solution to this equation: 

 

𝑦 = 𝑡𝑔𝑥 − 1 + 𝐶𝑒−𝑡𝑔𝑥 

 
Using the initial condition 𝑦(0) = 0, we obtain 0 = −1 + 𝐶, from where C 

= 1. Consequently, the required particular solution has the form 

 

𝑦 = 𝑡𝑔𝑥 − 1 + 𝐶𝑒−𝑡𝑔𝑥 = 𝑡𝑔𝑥 − 1 + 1 ∙ 𝑒−𝑡𝑔𝑥 

 
𝑦 = 𝑡𝑔𝑥 − 1 + 𝑒−𝑡𝑔𝑥. ■ 

 

 

Example 3.Integrate equation 

𝑦′ + 
𝑥𝑦 

1 − 𝑥2 

 
= 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 + 𝑥 

Solution.We integrate the corresponding homogeneous equation: 

 

𝑦′ + 
𝑥𝑦 𝑑𝑦 𝑥𝑑𝑥 

= 0; = − 
1 − 𝑥2 𝑦 1 − 𝑥2 

 

𝑙𝑛𝑦 = 
1 

ln(1 − 𝑥2) + 𝑙𝑛𝐶 2 

 

that is 𝑦 = 𝐶√1 − 𝑥2. 
We now believe 

 

𝑦 = 𝐶(х)√1 − 𝑥2 ; tℎ𝑒𝑛 
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𝑥С(𝑥) 
𝑦′ = 𝐶′ (𝑥) √1 − 𝑥2 −   

√1 − 𝑥2 

After substituting the initial inhomogeneous equation we obtain 

 

𝑦′ = 𝐶′(𝑥)√1 − 𝑥2 − 
𝑥С(𝑥)

 
√1 − 𝑥2 

𝑥 
+ 

1 − 𝑥2 

 
 

𝐶(𝑥)√1 − 𝑥2 = 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 + 𝑥 

that is 
 

 
Integrating, we find 

𝐶′(𝑥) = 
arcsinx 

√1 − 𝑥2 

𝑥 
+  

√1 − 𝑥2 

 

𝑎𝑟𝑐𝑠𝑖𝑛𝑥 𝑥 
𝐶(𝑥) = ∫ [  + ] 𝑑𝑥 = 

1 
(𝑎𝑟𝑐𝑠𝑖𝑛𝑥)2 − √1 − 𝑥2 + 𝐶 

√1 − 𝑥2 √1 − 𝑥2 2 

The general solution to this equation has the form 

 

𝑦 = √1 − 𝑥2[(𝑎𝑟𝑐𝑠𝑖𝑛𝑥)2 − √1 − 𝑥2 + 𝐶]. ■ 
 

 

Example 4. Solve the equation 𝑦′ + 
𝑦 

𝑥 
= 𝑥 2𝑦4. 

Solution.This is the Bernoulli equation. Let's integrate it using the method of 

varying an arbitrary constant. To do this, we first integrate the corresponding linear 

homogeneous equation 

 

the decision of which у = 
С 

. 
х 

𝑦′ + 
𝑦 

= 0, 
𝑥 

We are looking for a solution to the original Bernoulli equation, assuming 

 

𝑦 = 
𝐶(𝑥)

, 𝑦′ = 
𝐶′(𝑥) 

− 
𝐶(𝑥) 

𝑥 𝑥 𝑥2 

 
Substituting y and𝑦′ into the original equation gives 

 
𝐶′(𝑥) 

− 
𝐶(𝑥) 

+ 
𝐶(𝑥) 

= 𝑥2 [
𝐶(𝑥)

]
4 

or 
С′(𝑥) 

= 
[𝐶(𝑥)]4 

𝑥 𝑥2 𝑥2 𝑥 𝑥 𝑥2 

 
Let's integrate the resulting equation: 
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′ ( ′ 

𝑑𝐶(𝑥) 
= 

𝑑𝑥
; −  

1 

[𝐶(𝑥)]4 𝑥 3[𝐶(𝑥)]3 
= 𝑙𝑛𝑥 − 𝑙𝑛𝐶 

 
 1  

𝐶(𝑥) = . 
3 𝐶 
√3𝑙𝑛 ( ) 

𝑥 

 
General solution to the original equation 

 

𝑦 = 
𝐶(𝑥) 

= 
1 

. ■
 

𝑥 3 𝐶 
𝑥 √3𝑙𝑛(

𝑥
) 

 
Example 5. Integrate equation 

 

 
 

𝑦′ − 
2𝑥𝑦 

1 + 𝑥2 

√𝑦 
= 4 

√1 + 𝑥2 
𝑎𝑟𝑐𝑡𝑔𝑥. 

Solution.This is the Bernoulli equation. We integrate it using the Bernoulli 

method, for which we set 𝑦 = 𝑢𝑣. Substituting the original equation 

 

𝑦 = 𝑢𝑣, 𝑦′ = 𝑢′𝑣 + 𝑢𝑣′ 
 

Let's group the terms containing u in the first place: 
 

 

 2𝑥𝑣  √𝑢𝑣 𝑢 𝑣 + 𝑢 𝑣 − ) = 4 
 

𝑎𝑟𝑐𝑡𝑔𝑥 
1 + 𝑥2 √1 + 𝑥2 

Let us take as v some particular solution of the equation 

𝑣′ −  
2𝑥𝑣 

1 + 𝑥2 
= 0. 

 
Separating the non-variables, we find 

 

𝑑𝑣 2𝑥𝑑𝑥 
= ; 𝑙𝑛𝑣 = ln(1 + 𝑥2) ; 𝑣 = 1 + 𝑥2 

𝑣 1 + 𝑥2 

(we do not enter the integration constant). 

To find u we have the equation 

 

𝑢′𝑣 = 4  √𝑢𝑣  
𝑎𝑟𝑐𝑡𝑔𝑥, 

√1+𝑥2 
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𝑦 +  𝑦 = 

or(since 𝑣 = 1 + 𝑥2)  
 

𝑢′ = 
4√𝑢𝑎𝑟𝑐𝑡𝑔𝑥

.
 

1 + 𝑥2 

𝑢 = (𝑎𝑟𝑐𝑡𝑔2𝑥 + 𝐶)2 𝑎𝑛𝑑  𝑦 = 𝑢𝑣 = (1 + 𝑥2)(𝑎𝑟𝑐𝑡𝑔2𝑥 + 𝐶)2 

 
general solution of the original equation. 

 

Try to decide for yourself [3] 

 

1. Solve the equation ′ 𝑛 𝑎 ; 𝑦(1) = 0 
𝑥 𝑥𝑛 

2. Integrate the equation 𝑦′ + 2𝑥𝑦 = 𝑥𝑒−𝑥
2
 

3. Integrate the equation 𝑦 = 𝑥𝑦′ + 𝑦′ 𝑙𝑛𝑦 
4. Integrate the equation (𝑥2𝑙𝑛𝑦 – 𝑥)𝑦′ = 𝑦 

 

Reply.1) 𝑦 = 
𝑎(𝑥−1)

 
𝑥𝑛 2) 𝑦 = 𝑒−𝑥

2
 

𝑥2 

( + 𝐶) 
2 

3) 𝑥 = 𝐶𝑦 − 1 − 𝑙𝑛𝑦 4) 𝑥 = 
1

 
𝑙𝑛𝑦+1−𝐶𝑦 

 

8 - §. Equations in total differentials 

Definition. The equation [1] 

𝑀(𝑥, 𝑦) 𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 (1) 

 

is called a total differential equation if 𝑀(𝑥, 𝑦) and 𝑁(𝑥, 𝑦) are continuous, 

differentiable functions for which the relation holds 
𝛛𝑀 

= 
𝛛𝑁 (2) 

𝛛𝑦 𝛛𝑥 

𝛛𝑀 
 

𝛛𝑦 
and 𝛛𝑁 

𝛛𝑥 
continuous in some region. 

Integration of equations in total differentials. Let us prove that if the left 

side of equation (1) is a complete differential, then condition (2) is satisfied, and 

vice versa - if condition (2) is satisfied, the left side of equation (1) is a complete 

differential of some function u(x, y), that is, equation (1 ) has the form 
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𝑑𝑢(𝑥, 𝑦) = 0 (3) 

 

and therefore its general integral is 𝑢(𝑥, 𝑦) = 𝐶. 
Let us first assume that the left side of equation (1) is the total differential of 

some function 𝑢 (𝑥, 𝑦), that is 
 

 

 

Then 

𝑀(𝑥, 𝑦) 𝑑𝑥 + 𝑁 (𝑥, 𝑦)𝑑𝑦 = 𝑑𝑢 = 
𝜕𝑢 

 
 

𝜕𝑥 
𝑑𝑥 + 

𝜕𝑢 
 

 

𝜕𝑦 
𝑑𝑦 

𝑀 = 
𝜕𝑢 

 
 

𝜕𝑥 
, 𝑁 = 

𝜕𝑢 
 

 

𝜕𝑦 

 
Differentiating the first relation by 𝑦, the second – by 𝑥 we obtain 

 

𝜕𝑀 
 

 

𝜕𝑦 

𝜕2𝑢 
= , 

𝜕𝑥𝜕𝑦 

𝜕𝑁 
= 

𝜕𝑥 

𝜕2𝑢 
 

 

𝜕𝑦𝜕𝑥 

 
Assuming continuity of second derivatives, we have 

 

𝜕𝑀 
= 

𝜕𝑦 

𝜕𝑁 
 

 

𝜕𝑥 

 
that is, equality (2) is a necessary condition for the left-hand side of equation (1) to 

be the total differential of some function 𝑢(𝑥, 𝑦). Let us show that this condition is 

also sufficient, that is, that if equality (2) is satisfied, the left-hand side of equation 

(1) is the complete differential of some function  𝑢( 𝑥, 𝑦 ). 

We find the relationships 𝛛𝑢 = М(х, у ) 
𝛛𝑥 

 
𝑥 

𝑢 = ∫ 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝜑(𝑦) , 
𝑥0 

 
where 𝑥0 is the abscissa of any point from the region of existence of the solution. 

When integrating, we consider them to be constant, so an arbitrary 

integration constant can depend on. Let us select the function 𝜑(𝑥) so that the 

second of relations (4) is satisfied. To do this, we differentiate both sides of the last 

equality by y and equate the result to 𝑁(𝑥, 𝑦): 
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𝑥0 

𝜕𝑢 
 

 

 

𝑥 𝜕𝑀 
= ∫ 𝑑𝑥 + 𝜑′(𝑦) = 𝑁(𝑥, 𝑦) 

 
but since 

 

 

then we can write 

𝜕𝑦 𝑥0 
𝜕𝑦  

 
𝜕𝑀 

= 
𝜕𝑦 

 
 
𝜕𝑁 

 
 

𝜕𝑥 

 

𝑥 𝜕𝑁 
∫ 𝑑𝑥 + 𝜑′(𝑦) = 𝑁, 

 
that is. 

𝑥0 
𝜕𝑦 

 
𝑁(𝑥, 𝑦)|𝑥 + 𝜑′(𝑦) = 𝑁(𝑥, 𝑦) or 𝑁(𝑥, 𝑦) – 𝑁(𝑥0, 𝑦) + 𝜑′(𝑦) = 𝑁(𝑥, 𝑦) 

 

Hence 

 

or 

 

𝜑′(𝑦) = 𝑁(х0, 𝑦) 

у 

𝜑(𝑦) = ∫ 𝑁(𝑥0 
у0 

, 𝑦)𝑑𝑦 + 𝐶1 

 
Thus, the function 𝑢(𝑥, 𝑦) will have the form 

 

𝑥 

𝑢 = ∫ 𝑀(𝑥, 𝑦)𝑑𝑥 + 
𝑥0 

у 

∫ 𝑁(𝑥0 
у0 

, 𝑦)𝑑𝑦 + 𝐶1 

 
Here 𝑃(𝑥0, 𝑦0) is a point in the vicinity of which there is a solution to 

differential equation (1). 

Equating this expression to an arbitrary constant C, we obtain the general 

integral of equation (1): 
 

∫
𝑥 

𝑀(𝑥, 𝑦)𝑑𝑥 + 
у 

𝑁(𝑥 , 𝑦)𝑑𝑦 = С (5) 
𝑥0 

∫у0 
0 

 
Example 1. Given equation 2𝑥 𝑑𝑥 + 

𝑦2−3𝑥2 

𝑑𝑦 = 0 
𝑦3 𝑦4 

Let's check whether these are complete differential equations. Let's denote 

𝑀 = 
2𝑥 

𝑦3  , 𝑁 = 
𝑦2 − 3𝑥2 

 
 

𝑦4 
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Then  
𝜕𝑀 6х 

 
𝜕𝑁 6х 

𝜕𝑦 
= − 

у4 , 
𝜕𝑥 

= − 
у4 

 
Condition (2) is 𝑦 ≠ 0 satisfied. This means that the left side of this 

equation is the complete differential of some unknown function 𝑢(𝑥, 𝑦). Let's find 
this function. So then, therefore 𝛛𝑢 = 

2𝑥 
, 

𝛛𝑥 𝑦3 

 

2𝑥 
𝑢 = ∫ 

𝑦3 𝑑𝑥 + 𝜑(𝑦) = 
𝑥2 

𝑦3 + 𝜑(𝑦) 

 
where 𝜑(𝑦) - is a function that is not yet defined y. 

Differentiating this relationship by y and taking into account that 

 

 

 

we find 

𝜕𝑢 
= 𝑁 = 

𝜕𝑦 

 
3𝑥2 

𝑦2 − 3𝑥2 
 

 

𝑦4 

 
𝑦2 − 3𝑥2 

 
hence, 

− 
𝑦4 + 𝜑′(𝑦) = 

 
 

𝑦4 

𝜑′(у) = 
1 

, ( ) 
1

 
𝜑 у 

у2 = − 
у 

+ С1 

𝑢 (𝑥, 𝑦) = 
𝑥2 

𝑦3 − 
1 

𝑦 
+ 𝐶1 

Thus, the general integral of the original equation is 

𝑥2 

𝑦3 − 
1 

 = С. 
𝑦 

 
Example 2. The equation [9] 

(3𝑥2 + 10𝑥𝑦)𝑑𝑥 + (5𝑥2 − 1)𝑑𝑦 = 0 

 
will be an equation in complete differentials throughout the XOY plane, since the 

functions 

M(x,y) = 3𝑥2 + 10xy, N(x,y) = 5𝑥2 – 1 

and their partial derivatives 



47 
 

𝜕𝑀(𝑥, 𝑦) 
 

 

𝜕𝑦 
= 10х, 

𝜕𝑁(𝑥, 𝑦) 
 

 

𝜕𝑥 
= 10𝑥 

everywhere continuous 

 

 

The equation 

 

𝜕𝑀 
 

 

𝜕𝑦 

 
𝜕𝑁 

= 
𝜕𝑥 

𝑥2𝑦𝑑𝑥 − (5𝑥𝑦 + 1)𝑑𝑦 = 0 

 
is not an equation in total differentials, since there is no region in the XOY plane 

in which the partial derivatives: 

 
𝜕𝑀 

= 𝑥2 𝑎𝑛𝑑 
𝜕𝑁 

= −5𝑦 
𝜕𝑦 𝜕𝑥 

 
were identically equal. 

If the equation 

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 

 
1. is an 𝜎 equation in total differentials in the domain, then it can be written 

in this domain as: 

𝑑𝑢(𝑥, 𝑦) = 0 

 
where 𝑢(𝑥, 𝑦) is some function. 

Let 𝑦 = 𝜑(𝑥) be any solution of the equation lying in the domain 𝜎. Then 

𝑑𝑢(𝑥, 𝜑(𝑥)) ≡ 0, 𝑢(𝑥, 𝑦) = 𝐶, where C- is a certain number. 

Conversely, for any function 𝑦 = 𝜑(𝑥) implicitly given by the equation 

𝑢(𝑥, 𝑦) = 𝐶, where C - is a number, we have 𝑑𝑢(𝑥, 𝑦) = 0, 𝑡ℎ𝑎𝑡 𝑖𝑠, у 
= 𝜑(х) is the solution to equation (1). 

The relation 𝑢(𝑥, 𝑦) = 𝐶, where C - is an arbitrary constant, is the general 

integral of equation (1) in the region 𝜎. 

 
Example 3. The equation [3] 

[𝑐𝑜𝑠(𝑥 + 𝑦) + 2]𝑑𝑥 + [ 𝑐𝑜𝑠(𝑥 + 𝑦) – 5]𝑑𝑦 = 0 

 
is an equation in complete differentials throughout the 𝑋𝑂𝑌 plane. Because 

 

[𝑐𝑜𝑠(𝑥 + 𝑦) + 2]𝑑𝑥 + [𝑐𝑜𝑠(𝑥 + 𝑦) – 5]𝑑𝑦 = 𝑑[𝑠𝑖𝑛(𝑥 + 𝑦) + 2𝑥 – 5𝑦], 
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1 

then this equation has the form: 

𝑑[𝑠𝑖𝑛(𝑥 + 𝑦) + 2𝑥 – 5𝑦] = 0. 

 
The general integral of this equation in the 𝑋𝑂𝑌 plane is the expression 

 

𝑠𝑖𝑛(𝑥 + 𝑦) + 2𝑥 – 5𝑦 = 𝐶 

 
where C is an arbitrary constant. 

 

Try to decide for yourself [3] 

 

1. Find the general integral of the equation 

(𝑒𝑥 + 𝑦 + 𝑠𝑖𝑛𝑦)𝑑𝑥 + (𝑒𝑦 + 𝑥 + 𝑥𝑐𝑜𝑠𝑦)𝑑𝑦 = 0 
2. Find the general integral of the equation 

(𝑥 + 𝑦 − 1)𝑑𝑥 + (𝑒𝑦 + 𝑥)𝑑𝑦 = 0 
3. Find the general integral of the equation 

(𝑥 𝑐𝑜𝑠 𝑦 − 𝑦𝑠𝑖𝑛𝑦)𝑑𝑦 + (𝑥 𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦)𝑑𝑥 = 0 
4. Find the general integral of the equation 

(𝑥 + 𝑠𝑖𝑛𝑦)𝑑𝑥 + (𝑥𝑐𝑜𝑠𝑦 + 𝑠𝑖𝑛𝑦)𝑑𝑦 = 0 
5. Find the general integral of the equation 

(𝑦 + 𝑒𝑥𝑠𝑖𝑛𝑦)𝑑𝑥 + (𝑥 + 𝑒𝑥𝑐𝑜𝑠𝑦)𝑑𝑦 = 0 
6. Solve equations. 

(𝑥2 + 𝑠𝑖𝑛𝑦)𝑑𝑥 + (1 + 𝑥𝑐𝑜𝑠𝑦)𝑑𝑦 = 0 

7. (𝑥𝑦 + 𝑠𝑖𝑛𝑦)𝑑𝑦 + ( 0,5𝑥2 + 𝑥𝑐𝑜𝑠𝑦)𝑑𝑦 = 0 

8. (𝑥2 + 𝑦2 + 𝑦)𝑑𝑥 + (2𝑥𝑦 + 𝑥 + 𝑒𝑦)𝑑𝑦 = 0; 𝑦(0) = 0. 

9. (𝑦 + 𝑥𝑙𝑛𝑦)𝑑𝑥 + (
𝑥2 

+ 𝑥 + 1)𝑑𝑦 = 0 
2𝑦 

10. (3𝑥2𝑦 + 𝑠𝑖𝑛𝑥)𝑑𝑥 + (𝑥2 + 1 + 𝑎𝑟𝑐𝑡𝑔𝑦)𝑑𝑦 = 0 

 
Answers.1) 𝑒𝑥 + 𝑥𝑦 + 𝑥𝑠𝑖𝑛𝑦 + 𝑒𝑦 = 𝐶 

 

2) 1 𝑥2 
2 

+ 𝑥𝑦 − 𝑥 + 𝑒𝑦 − 1 = 𝐶1, 𝑒𝑦 +  𝑥2 
2 

+ 𝑥𝑦 − 𝑥 = 𝐶, 𝑜𝑟 С = С1 + 1 

3) 𝑢(𝑥, 𝑦) = 𝑥𝑒𝑥𝑠𝑖𝑛𝑦 + 𝑒𝑥𝑦𝑐𝑜𝑠𝑦 − 𝑒𝑥𝑠𝑖𝑛𝑦 = 𝐶  or 
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𝑒𝑥(𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦) = 𝐶 
 

4) 1 𝑥2 + 2𝑥𝑦 − 𝑦2 − 4𝑥 + 8𝑦 = 𝐶 
2 

 

5) 𝑥𝑦 + 𝑒𝑥𝑠𝑖𝑛𝑦 = 𝐶 

6) 𝑥3 + 3𝑦 + 3𝑥𝑠𝑖𝑛𝑦 = 𝐶 

7) 
1 

𝑥2𝑦 + 𝑥𝑠𝑖𝑛𝑦 = 𝐶 
2 

8) 1 𝑥3 + 𝑥𝑦2 + 𝑥𝑦 + 𝑒𝑦 = 1 
3 

9) 𝑥2𝑙𝑛𝑦 + 2𝑦(𝑥 + 1) = 𝐶 

10) 𝑥3𝑦 − 𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑦 = 𝐶 
 

 
9 - §. Integrating factor 

 

Let the left side of the equation [1] 

 

𝑀(𝑥, 𝑦) 𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 (1) 

 

there is no full differential. Sometimes it is possible to select a function such that 

μ (х, у ), after multiplying all the terms of the equation, the left side of the equation 

becomes a complete differential. The general solution of the equation obtained in 

this way coincides with the general solution of the original equation; the function is 

called the integrating factor of equation (1). 

In order to find the integrating factor, we proceed as follows: multiply both 

sides of this equation by the still unknown integrating factor𝜇: 

𝜇 𝑀𝑑𝑥 + 𝜇 𝑁𝑑𝑦 = 0 
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In order for the last equation to be an equation in total differentials, it is 

necessary and sufficient that the relation be satisfied 

 

 

that is 

 

 

 
𝜕𝑀 

𝜕(𝜇𝑀) 
= 

𝜕𝑦 
 

𝜕𝜇 

𝜕(𝜇𝑁) 
 

 

𝜕𝑥 
 

𝜕𝑁 

 
 

 
𝜕𝜇 

𝜇 
𝜕𝑦 

or 

+ 𝑀 
 

 

𝜕𝑦 
= 𝜇 

𝜕𝑥 
+ 𝑁 

 
 

𝜕𝑥 

𝑀 
𝛛𝜇 

− 𝑁 
𝛛𝜇 𝛛𝑁 𝛛𝑀 

𝜇( − ) 
𝛛𝑦 𝛛𝑥 𝛛𝑥 𝛛у 

 

After dividing both sides of the last equation by, we get𝜇 

𝑀 
𝛛𝑙𝑛𝜇 

− 𝑁 
𝛛𝑙𝑛𝜇 

= 
𝛛𝑁 

− 
𝛛𝑀 

 
(2) 

𝛛𝑦 𝛛𝑥 𝛛𝑥 𝛛у 

 
It is obvious that any function μ(х, у )that satisfies the last equation is an 

integrating factor of equation (1). Equation (2) is a partial differential equation 

with an unknown function 𝜇, depending on two variables 𝑥 and 𝑦. It can be 

proven that under certain conditions it has an infinite number of solutions and, 

therefore, equation (1) has an integrating factor. But in general, the problem of 

finding equation (2) is even more difficult than the original problem of integrating 

equation (1). Only in some special cases is it possible to find the function 𝜇 (х, у ). 
Let, for example, equation (1) admit an integrating factor that depends only 

on 𝑦. Then 
𝜕𝑙𝑛𝜇 

= 0 
𝜕𝑥 

and to find we obtain 𝜇 the ordinary differential equation 
𝛛𝑁 

− 
𝛛𝑀 

𝜕𝑙𝑛𝜇 
= 

𝜕у 

 
 

𝛛𝑥 
 

 

𝛛у 

М 

 
from which ln𝜇 is determined, and 𝜇 therefore. It is clear that this can be done 

only in the case 
𝛛𝑁 

 

𝛛𝑥 

𝛛𝑀 
− 

𝛛у if the expression does not depend on y, but depends only 
М 

on x, then an integrating factor that depends only on x can easily be found. 

Example 1. Solve the equation (𝑦 + 𝑥𝑦2 )𝑑𝑥 – 𝑥𝑑𝑦 = 0 

 
Solution. Here 𝑀 = 𝑦 + 𝑥𝑦2, 𝑁 = − 𝑥 

= 
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𝜕𝑀 
 

 

𝜕у 
= 1 + 2𝑥𝑦, 

𝜕𝑁 
 

 

𝜕𝑥 
= −1, 

𝜕𝑀 
 

 

𝜕у 

𝜕𝑁 
≠ 

𝜕𝑥 

 
Therefore, the left side of the equation is not a complete differential. Let's 

see if this equation does not admit an integrating factor that depends only on. 

Noticing that 
𝛛𝑁 

− 
𝛛𝑀 

 
 

𝛛𝑥 
 

 

𝛛у 
= 

М 

−1 − 1 − 2ху 2 

у + ху2 
= − 

у 

We conclude that the equation admits an integrating factor that depends only 

on. We find it: 

𝑑𝑙𝑛𝜇 = − 
2
; from here 𝑙𝑛𝜇 = −2𝑙𝑛𝑦, 𝑡ℎ𝑎𝑡 𝑖𝑠 𝜇 = 

1
 

𝑑у 𝑦 у2 

After multiplying all terms of this equation by the found integrating factor, 

we obtain the equation 𝜇 

1 𝑥 
(
у 

+ х) 𝑑𝑥 − 
𝑦2 𝑑𝑦 = 0 

in full differentials 
𝛛𝑀 

= 
𝛛𝑁 

= − 
1 

.
 

𝛛у 𝛛𝑥 у2 

Solving this equation, we find its general integral 

х + 
х2 

+ С = 0 or 𝑦 = − 
2х 

. ■ 
у 2 х2+2С 

 
Example 2. Find the general integral of the equation 

 

(𝑥𝑐𝑜𝑠𝑦 – 𝑦𝑠𝑖𝑛𝑦)𝑑𝑦 + (𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦)𝑑𝑥 = 0 
Solution. We have 

 

𝑃(𝑥, 𝑦) = 𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦, 𝑄(𝑥, 𝑦) = 𝑥𝑐𝑜𝑠𝑦 – 𝑦𝑠𝑖𝑛𝑦 
 

𝜕𝑃 
 

 

𝜕𝑦 
= 𝑥𝑐𝑜𝑠𝑦 + 𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦, 

𝜕𝑄 
 

 

𝜕𝑥 
= 𝑐𝑜𝑠𝑦 
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𝛛𝑃 
− 

𝛛𝑄 𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦 
𝛛𝑦 𝛛𝑥 

=
 

𝑄 
= 1 

𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦 

 
Therefore, this equation has an integrating factor that depends only on 𝑥. 

Let’s find this integrating factor: 

 

𝛛𝑃 − 𝛛𝘘 
𝛛𝑦 𝛛𝑥𝑑𝑥 

𝜇 = 𝑒
∫ 

𝘘 = 𝑒∫ 𝑑𝑥 = 𝑒𝑥 

 
Multiplying the original equation by, we get the equation ех 

 
𝑒𝑥(𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦)𝑑𝑦 + 𝑒𝑥(𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦)𝑑𝑥 = 0 

 
which, as is easy to see, is already an equation in total differentials; in fact, we 

have 

 

𝑃1(𝑥, 𝑦) = 𝑒𝑥(𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦), 𝑄1(𝑥, 𝑦) = 𝑒𝑥(𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦). 
 

From here 

𝜕𝑃1 
= 

𝜕 
 
[𝑒𝑥(𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦)] = 𝑒𝑥(𝑥𝑐𝑜𝑠𝑦 + 𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦) 

𝜕𝑦 𝜕𝑦 
𝜕𝑄1 

= 
𝜕 [𝑒𝑥(𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦)] = 𝑒𝑥(𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦 + 𝑐𝑜𝑠𝑦) 

𝜕𝑥 𝜕𝑥 

These derivatives are equal and the left part of the resulting equation has the 

form 𝑑𝑢(𝑥, 𝑦). 
𝜕𝑢 

= 𝑒𝑥(𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦), 
𝜕𝑢 

= 𝑒𝑥(𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦) 
𝜕𝑦 𝜕𝑥 

Integrating the first of these equalities, we find 

 

𝑢 = ∫ 𝑒𝑥 (𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦)𝑑𝑦 + 𝐶(𝑥) = 𝑥𝑒𝑥𝑠𝑖𝑛𝑦 + 𝑒𝑥𝑦𝑐𝑜𝑠𝑦 − 𝑒𝑥𝑠𝑖𝑛𝑦 + 𝐶(𝑥) 

Let's find the derivative of the resulting function: 

 
𝜕𝑢 

= 𝑒𝑥𝑠𝑖𝑛𝑦 + 𝑥𝑒𝑥𝑠𝑖𝑛𝑦 − 𝑒𝑥𝑠𝑖𝑛𝑦 + 𝑒𝑥𝑦𝑐𝑜𝑠𝑦 + 𝐶′(𝑥) = 
𝜕𝑥 

= 𝑒𝑥(𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦) + 𝐶′(𝑥) 
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Comparing the found value 𝛛 
𝛛𝑥 

with 𝑃(𝑥, 𝑦), we obtain 𝐶′(𝑥) = 0, that is, 

𝐶(𝑥) = 0. The general integral of the original equation has the form 

 

𝑢(𝑥, 𝑦) = 𝑥𝑒𝑥𝑠𝑖𝑛𝑦 + 𝑒𝑥𝑦𝑐𝑜𝑠𝑦 − 𝑒𝑥𝑠𝑖𝑛𝑦 = 𝐶 
𝑜𝑟 

𝑒𝑥(𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦) = 𝐶. ■ 

 

Try to decide for yourself [3] 

 

Integrate the following equations that have an integrating factor that depends 

only on or only on: 

1) 𝑦𝑑𝑥 − 𝑥𝑑𝑦 + 𝑙𝑛𝑥𝑑𝑥 = 0 (𝜇 = 𝜑(𝑥)). 

2) (𝑥2𝑐𝑜𝑠𝑥 − 𝑦)𝑑𝑥 + 𝑥𝑑𝑦 = 0 (𝜇 = (𝑥)). 

3) 𝑦𝑑𝑥 − (𝑥 + 𝑦2)𝑑𝑦 = 0; (𝜇 = 𝜑(𝑦)). 
 

4) 𝑦√1 − 𝑦2𝑑𝑥 + (𝑥√1 − 𝑦2 + 𝑦)𝑑𝑦 = 0; (𝜇 = 𝜑(𝑦)). 

 
Answers. 

1) 𝑦 = 𝐶𝑥 − 𝑙𝑛𝑥 − 1; 𝜇 = 
1

 
𝑥2 

2) 𝑦 = 𝑥(𝐶 − 𝑠𝑖𝑛𝑥); 𝜇 = 
1

 
𝑥2 

3) 𝑥 = 𝑦(𝐶 + 𝑦); 𝜇 = 
1

 
𝑦2 

4) 𝑥𝑦 − √1 − 𝑦2 = 𝐶; 𝜇 = 
1

 
√1−𝑦2 

 
10 - §. Riccati equations 

 

𝑦′ + 𝑦2 = 𝐴𝑥𝛼 
integrates squarely only for certain values, and in particular, the equation 𝛼 

𝑦′ + 𝑦2 = 𝑥 
does not integrate in quadratures. [4] 

First-order differential equation of the form 

 
𝑑𝑦 + 𝑎(𝑥)𝑦2 + 𝑏(𝑥)𝑦 + 𝑐(𝑥) = 0 (1) 
𝑑𝑥 

 
where  𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥) are known functions. 
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(1) called the Riccati equation (generalized). If the coefficients a, b, c in the 

Riccati equation are constant, then the equation allows for the separation of 

variables and we immediately obtain a general integral 
𝑑𝑦 

𝐶1 − 𝑥 = ∫ 
𝑎𝑥2 + 𝑏𝑦 + 𝑐 

As Liouville showed, equation (1) is generally not integrable by quadratures. 

 

Properties of the Riccati equation 

 

1. If some particular solution to у1(х) equation (1) is known, then its general 

solution can be obtained using quadratures. 

In fact, let's put 

𝑦 = 𝑦1(𝑥) + 𝑧(𝑥) (2) 

 

where 𝑧(𝑥) is the new unknown function. 

Substituting (2) into (1), we find 

 
𝑑𝑦1 

+ 
𝑑𝑧 

+ 𝑎(𝑥)(𝑦2 + 2𝑦 𝑧 + 𝑧2) + 𝑏(𝑥)(𝑦 + 𝑧) + 𝑐(𝑥) = 0 
𝑑𝑥 

 

𝑑𝑥 1 1 1 

from where, due to the fact that 𝑦1(x) is a solution to equation (1), we obtain 

 

𝑑𝑦 + 𝑎(𝑥)(2𝑦 𝑧 + 𝑧2) + 𝑏(𝑥)𝑧 = 0, 
𝑑𝑥 1 

or 
𝑑𝑦 + 𝑎(𝑥)𝑧2 + [2𝑎(𝑥)𝑦 + 𝑏(𝑥)]𝑧 = 0 (3) 
𝑑𝑥 1 

Equation (3) is a special case of the Bernoulli equation. 

 

Example 1. Solve the Riccati equation 

𝑦′ − 𝑦2 + 2𝑒𝑥𝑦 = 𝑒2𝑥 + 𝑒𝑥 (4) 

 

knowing its particular solution 𝑦1 = 𝑒𝑥. 

Solution. Put we get 𝑦 = 𝑒𝑥 + 𝑧(𝑥) and substitute into equation (4); 

 
𝑑𝑧 

= 𝑧2, 𝑤ℎ𝑒𝑟𝑒  − 
1 

= 𝑥 − 𝐶, 𝑜𝑟 𝑧 = 
1

 
𝑑𝑥 𝑧 𝐶 − 𝑥 
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Thus, the general solution to equation (4) 

 

𝑦 = 𝑒𝑥 + 
1 

. ■ 
𝐶−𝑥 

Comment. Instead of substitution (2), it is often practically more profitable 

to substitute 
1 

𝑦 = 𝑦1(𝑥) + 
𝑢(𝑥)

 

 
which immediately leads the Riccati equation (1) to linear 

 

𝑢′ − (2𝑎𝑦1 + 𝑏) = 𝑎. 

 

2. If two partial solutions of equation (1) are known, then its general integral is 

found by one quadrature. 

Let two partial solutions of equation (1) be known. Using 𝑦1(𝑥)  𝑎𝑛𝑑  𝑦2(𝑥) 

the fact that the identity holds 

 
𝑑𝑦1 

≡ −𝑎(𝑥)𝑦2 − 𝑏(𝑥)𝑦 − 𝑐(𝑥) 
 

𝑑𝑥 1 1 

Let's represent equation (1) in the form 

 
1 𝑑(𝑦 − 𝑦1) 

= −𝑎(𝑥)(𝑦 + 𝑦 ) − 𝑏(𝑥) 
 

𝑦 − 𝑦1 𝑑𝑥 1 
or 

𝑑 
 

𝑑𝑥 
[𝑙𝑛𝑦 − 𝑦1 ] = −𝑎(𝑥)(𝑦 + 𝑦1 ) − 𝑏(𝑥) (5) 

 

For the second particular 𝑦2(𝑥) solution we similarly find 

 

𝑑 
 

𝑑𝑥 
[𝑙𝑛𝑦 − 𝑦2 ] = −𝑎(𝑥)(𝑦 + 𝑦2 ) − 𝑏(𝑥) (6) 

 

Subtracting equality (5) equality (6), we get 

 
𝑑 

[𝑙𝑛 
𝑦 − 𝑦1

] = 𝑎(𝑥)(𝑦 − 𝑦 ), 

 
Where 

  

𝑑𝑥 𝑦 − 𝑦2 2 1 
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𝑦 − 𝑦1 
= 𝐶∫ 𝑎(𝑥)[𝑦2(𝑥)−𝑦1(𝑥)]𝑑𝑥 (7) 

𝑦 − 𝑦2 
 

Example 2. The equation 𝑑𝑦 = 
𝑚2 

− 𝑦2, 𝑚 = 𝑐𝑜𝑛𝑠𝑡 has partial solutions 
𝑑𝑥 𝑥2 

 
1 𝑚 1 𝑚 

𝑦1 = 
𝑥 

+ 
𝑥2 , 𝑦2 = 

𝑥 
− 

𝑥2. Find its general integral. 

 

Solution. Using formula (7), we obtain the general integral of the original equation 
 

 

 

where 

𝑦 − 𝑦1 
 

 

𝑦 − 𝑦2 

−2𝑚 

= 𝐶∫ 𝑥2 𝑑𝑥 , 

𝑥2𝑦 − 𝑥 − 𝑚 2𝑚 

𝑥2𝑦 − 𝑥 + 𝑚 
= 𝐶 𝑥

 

 
11- §. Equations with individual variables. 

 

Definition.A differential equation of the 1st order is the so-called equation 

with individual variables. This is an equation of the form [7] 

𝑓(𝑥) + 𝑔(𝑦) 𝑦′ = 0 (1) 

 

Replacing 𝑦′ here and 𝑑 
𝑑𝑥 

multiplying the equation by 𝑑𝑥, we find 

 

𝑓(𝑥)𝑑𝑥 + 𝑔(𝑦)𝑑𝑦 = 0 (2) 
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𝑓(𝑥)𝑑𝑥– depends only on ty 𝑥 , and the other 𝑔(𝑦)𝑑𝑦 – only on 𝑦 – the variables 

are separated. To solve equation (2), it is enough to integrate this equation, which 

gives 

∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑦)𝑑𝑦 = 𝐶 

 
𝐹(𝑥) + 𝐺(𝑦) = 𝐶 (3) 

 

If we solve equation (3) relative, we get the equality 

 

𝑦 = 𝜑(𝑥, 𝐶) (4) 

 

the right side of which is the general solution of equation (1). 

Example 1. Apply the above to the differential equation 
𝑦′ 

2𝑥 + = 0 
𝑦 

Replacing  𝑦′  on 𝑑 
𝑑𝑥 

and multiplying by 𝑑𝑥, we get 

𝑑𝑦 

 
Integrating, we find 

2𝑥𝑑𝑥 + = 0 
𝑦 

𝑥2 + 𝑙𝑛𝑦 = 𝐶 
 

From here  

𝑙𝑛𝑦 = 𝐶 − 𝑥2  𝑜𝑟  𝑦 = 𝑒𝐶−𝑥
2 
. 

 

This equality can be rewritten as  

𝑦 = 𝑒𝐶 ∙ 𝑒−𝑥
2 
. 

Let's denote еС by 𝐶1, and then again instead of 𝐶1 we will use C. General 

solution of the differential equation in the form 

𝑦 = 𝐶𝑒−𝑥
2 
. 

 

This is called the general integral of a differential equation. General integral 

of the differential equation 

 

 

this equation is called 

𝐹(𝑥, 𝑦, 𝑦′) = 0 (5) 

 

𝐹(𝑥, 𝑦, 𝐶) = 0 (6) 
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𝑥, 𝑦 and C, solving which with respect to 𝑦, we find the general solution (5). Since 

finding u from (6) can present significant difficulties, but they are only of an 

algebraic nature. If the general integral or solution of the equation is expressed 

through non-elementary integrals, then it is considered found. 

 

Example 2. a) Integrating the equation 

 

2𝑥𝑑𝑥 + (5𝑦4 + 𝑐𝑜𝑠𝑦)𝑑𝑦 = 0 (7) 

 

we find its general integral 

𝑥2 + 𝑦5 + 𝑠𝑖𝑛𝑦 = 𝐶 (7a) 

 

Hence 𝑦 , through 𝑥 and C, equation (7a) is solved. b) for the equation 

2𝑥𝑑𝑥 + 𝑒−𝑦
2 
𝑑𝑦 = 0 

general integral  

𝑥2 + ∫ 𝑒−𝑦
2 
𝑑𝑦 = 𝐶 (7b) 

 

solved the equation, although the integral ∫ 𝑒−𝑦
2 

𝑑𝑦 is not expressed through 

elementary functions. 

At first glance, this approach seems like something like self-deception: after 

all, the solution has not been found. For equation (7), general integral (7a) and 

fixing some - or C in it. When the general integral of a differential equation can be 

written in a form containing indefinite integrals, the equation integrates in 

quadratures. 

Every differential equation with separated variables is integrated by 

quadratures. There are differential equations for which this is not true. 

 

12 - §.Claireau equation 

 

Let's consider the so-called Clairaut equation [1] 

 

𝑦 = 𝑥 
𝑑𝑦

 
𝑑𝑥 

𝑑𝑦 
+ 𝜓 ( 

𝑑𝑥 
) (1) 

 

It is integrated by introducing an auxiliary parameter. Namely, let us then 

𝑑𝑦 = р; put equation (1) in the form 
𝑑𝑥 

𝑦 = 𝑥𝑝 + 𝜓(𝑅) (1' ) 
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Let us differentiate all terms of the last equation from 𝑥, keeping in mind 

that p = 𝑑𝑦 
𝑑𝑥 

is a function of 𝑥: 

𝑝 = 𝑥 
𝑑р 

+ р + 𝜓′(р) 
𝑑р

 
𝑑𝑥 

or 

[х + 𝜓′(р)] 
𝑑р 

= 0 
𝑑𝑥 

𝑑𝑥 

 

 

 
and 

Equating each factor to zero, we get 

𝑑р = 0 (2) 
𝑑𝑥 

 

х + 𝜓′(р) = 0 (3) 

 

1) Integrating equality (2), we obtain 𝑝 = 𝐶 (𝐶 = 𝑐𝑜𝑛𝑠𝑡). Substituting this 

value into equation (1′), we find its general integral 

 

𝑦 = 𝑥𝐶 + 𝜓(𝐶)  (4) 

 

which from a geometric point of view represents a family of straight lines. 

2) If we find m from equation (3) as a function and substitute it into equation 

(1′), then we obtain the function 

 

𝑦 = 𝑥𝑝(𝑥) + 𝜓[𝑝(𝑥)] (1′′ ) 

 

which, as can be easily shown, is a solution to equation (1). 

In fact, by virtue of equality (3) we find 

 
𝒅𝒚 = р + [х + 𝜓′(р)] 

𝑑р 
, 

that is 
𝒅𝒙 

 
𝑑
𝑦 

 
 

𝑑𝑥 

 

 
= р. 

𝑑𝑥 

Therefore, substituting the function (1′′ ) into equation (1), we obtain the 

identity 

 

𝑥𝑝 + 𝜓(𝑝) = 𝑥𝑝 + 𝜓(𝑅). 
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С 

The solution (1′′) cannot be obtained from the general integral (4) for any 

value of C. This is a special problem; it is obtained by eliminating the parameter 

from the equations 

 

𝑦 = 𝑥𝑝 + 𝜓(𝑅), х + 𝜓′(р) = 0 

 
or, what is the same, with the exception of the equations 

𝑦 = 𝑥𝐶 + 𝜓(𝐶), 𝑥 + 𝜓′ (С) = 0 

 
Consequently, a special solution of the Clairaut equation determines the 

envelope of the family of straight lines defined by the general integral (4). 

Example 1. Find the general and special integrals of the equation 

 

𝑦 = 𝑥 
𝑑𝑦 

+ 
𝑑𝑥 

𝑎 
𝑑𝑦 

 𝑑𝑥  
 

 

𝑑𝑦 2 
( ) 

𝑑𝑥 

Solution. We obtain the general integral by replacing 𝑑 
𝑑𝑥 

with C: 

𝑎С 
𝑦 = 𝑥С +   

√1 + С2 

To obtain a special solution, differentiate the last equation with respect to C: 
𝑎 

𝑥 + 
2 3⁄  

= 0 
(1 + 𝐶 ) 2 

 

The special solution is obtained in parametric form 
𝑎 

 
𝑎С3 

𝑥 = − 
2 3⁄  

, 𝑦 = 2 3⁄ 

(1 + 𝐶 ) 2 (1 + 𝐶 ) 2 

 
By excluding parameter C, we can obtain a direct dependence between x 

and y. Raising both parts of each equation to a power 2 
3 

and adding the resulting 

equations term by term, we find a contradictory solution in the following form: 

𝑥
2⁄3 + 𝑦

2⁄3 = 𝑎
2⁄3 

This is an astroid. 

 

Example 2. Integrate the equation 𝑦 = 𝑥𝑦′ − еу′ 

Solution.Let us put 𝑦′ = 𝑝 and rewrite the equation in the form of 

𝑦 = рх – 𝑒𝑝. Differentiable: 

𝑑𝑦 = 𝑝𝑑𝑥 + 𝑥𝑑𝑝 − 𝑒𝑝𝑑𝑝; 

√ 1 + 
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0 

But 𝑑𝑦 = 𝑝𝑑𝑥, 
therefore the last equation takes the form 

 

𝑥𝑑𝑝 − 𝑒𝑝𝑑𝑝 = 0 or (𝑥 − 𝑒𝑝)𝑑𝑝 = 0 

 
𝑑𝑝 = 0 , 𝑥 − 𝑒𝑝 = 0,  𝑥 = 𝑒𝑝, 𝑑𝑝 = 0,  𝑝 = 𝐶; 

 
Substituting this value for p the equality 𝑦 = 𝑝𝑥 – 𝑒𝑝, we obtain the general 

solution of this equation: 

 

If we put 

𝑦 = 𝐶𝑥 − 𝑒𝐶. 

 

𝑥 = 𝑒𝑝, 𝑡ℎ𝑎𝑡 𝑦 = 𝑝𝑒𝑝 − 𝑒𝑝 = (𝑝 − 1)𝑒𝑝 

 
we arrive at a special solution to the original equation 

 
𝑥 = 𝑒𝑝 

{
𝑦 = (𝑝 − 1)𝑒𝑝 

Excluding the parameter p (in this case 𝑝 = 𝑙𝑛𝑥), we find a unique solution 

in explicit form: 

𝑦 = 𝑥(𝑙𝑛𝑥 − 1) 

 
Differentiating the special problem, we find 

𝑦′ = 𝑙𝑛𝑥. 
Equation of a tangent to an oblique integral curve at a point 𝑀(𝑥0; 𝑦0) 
[where 𝑦0 = 𝑥0(𝑙𝑛𝑥0 − 1)] will be written in the form 

𝑦 − 𝑦0 = 𝑦′ (𝑥 − 𝑥0)  𝑜𝑟  𝑦 − 𝑥0(𝑙𝑛𝑥0 − 1) = 𝑙𝑛𝑥0(𝑥 − 𝑥0), 
which after simplification gives 

 

If you put it here 

𝑦 = 𝑥𝑙𝑛𝑥0 − 𝑥0 . 

 

𝑙𝑛𝑥0 = 𝐶, 

then the equation of the family of tangents of the skew integral curve will take the 

form 

𝑦 = 𝐶𝑥 − 𝑒𝐶. ■ 

 

Try to decide for yourself [3] 
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1. Integrate equation 𝑦 = 𝑥 (
1 

+ 𝑦′) + 𝑦′ 4. y = xy′ + y′ - 𝑦′2 
𝑥 

2. 𝑦 = 𝑥𝑦′ + √𝑏2 + 𝑎2𝑦′2 5. 𝑦 = 𝑥𝑦′ + 𝑦′ 

3. 𝑥 = 
𝑦
 
𝑦′ 

+ 
1 

𝑦′2 
6. 𝑦 = 𝑥𝑦′ − 

1
 

𝑦′2 

 
Answers.1) general solution 𝑦 = 𝐶𝑥 + 𝐶2 + 1; 

𝑥 = −2𝑝 
𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛  { 

𝑦 = 1 − 𝑝 
or 𝑦 = 1 − 

𝑥2

 

4 

 
 

2) common decision 𝑦 = 𝐶𝑥 + √𝑏2 + 𝑎2𝐶2; 
 

𝑎2𝑝 
𝑥 = −   

√𝑏2 + 𝑎2𝑝2 
 

𝑥2 
 

𝑦2 

𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

{ 

𝑏2 

𝑦 =   
√𝑏2 + 𝑎2𝑝2 

𝑜𝑟 
𝑎2 + 

𝑏2 = 1 

 

3) Common decision 𝑦 = 𝐶𝑥 − 
1 

; 
𝐶 

𝑥 = − 
1

 

𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 { 
𝑝2 

𝑦 = − 
2

 
𝑝 

or у2 = −4х 

4) general decision or 𝑦 = 𝐶𝑥 + С(1 − 
𝑥 = 2𝑝 − 1 1 

( )2 

С); 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 { 
𝑦 = 𝑝2 

𝑦 = 
4 

𝑥 + 1 

5) common decision 𝑦 = 𝐶𝑥 + 𝐶 
 

6) common decision 𝑦 = 𝐶𝑥 − 
1

 
𝐶2 

; 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑦3 = − 
27 

𝑥2 
4 

13 - §. Lagrange equation 

 

Definition. Lagrange Equation called an equation of the form [1] 

𝑦 = 𝑥 𝜑(у′) + 𝜓(у′) (1) 

where φ and 𝜓- known functions from 𝑑𝑦. 
𝑑𝑥 

This equation is linear with respect to them. The Clairaut equation considered in 

the equation is a special case of the Lagrange equation at φ(y′). Integration of the 

Lagrange equation, as well as integration of the Clairaut equation, is carried out by 

introducing an auxiliary parameter. Let's put 𝜑(𝑦′) ≡ у′. 

2 
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𝑦′ = 𝑝; 
then the original equation will be written in the form 

 

𝑦 = 𝑥𝜑(𝑝) + 𝜓(𝑝) (1′) 
 

Differentiating from x, we get 

р = 𝜑(р) + [𝑥𝜑′(𝑝) + 𝜓′(𝑅) ] 

or 

р − 𝜑(р) = [𝑥𝜑′(𝑝) + 𝜓′(𝑝)] 
𝑑𝑝

 
𝑑𝑥 

 
𝑑𝑝 

 
 

𝑑𝑥 

 
(1′′ ) 

From this equation it is reasonable to find some solutions: namely, it turns 

into an identity for any constant value 𝑝 = 𝑝0 satisfying the condition 

𝑝0 − 𝜑(𝑝0) = 0 

 

Indeed, at a constant value of 𝑝 
𝑑р 

≡ 0, the derivative and both sides of 
𝑑𝑥 

equation (1′′) vanish. 
The solution corresponding to each value 𝑝 = 𝑝 , that is, 𝑑р = 𝑝 

 
, is a 

0 𝑑𝑥 0 

linear function of otx. In order to find this function, it is enough to substitute the 

value р = 𝑝0 into equality (1′): 

 

𝑦 = 𝑥𝜑(𝑝0) + 𝜓(𝑝0) 

 
If it turns out that this solution cannot be obtained from a general solution 

for any value of an arbitrary constant, then it will be a special solution. 

Let us now find a general solution. To do this, we write equation (1′′) in the 

form 

 

𝑑𝑥 
− х 

𝑑𝑝 

𝜑′(р) 
= 

р − 𝜑(р) 

𝜓′(р) 

р − 𝜑(р) 

and we will considerxas a function of neg. Then the resulting equation will be a 

linear differential equation with respect to the function x top. 

By solving it, we will find it 

𝑥 = 𝜔(р, С) (2) 
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0 

Eliminating the parameters of equations (1′) and (2), we obtain the general 

integral of equation (1) in the form 

𝐹(𝑥, 𝑦, 𝐶) = 0 

 
Example. Given equation 

𝑦 = 𝑥𝑦′2 + 𝑦′2 (I) 

 

Let's put 𝑦′ = 𝑝, we will have 

 

𝑦 = 𝑥𝑝2 + 𝑝2 (I′ ) 

 

differentiating from 𝑥, we get 

р = 𝑝2 + [2𝑥𝑝 + 2𝑝] 
𝑑𝑝
 
𝑑𝑥 

 
(I′′ ) 

 

We will find special solutions. Since 𝑝 = 𝑝2 𝑎𝑡 𝑝0 = 0 and 𝑝1 = 1, then 

the solutions will be linear functions 𝑦 = 𝑥2 + 02, that is, 𝑦 = 0 and 𝑦 = 

𝑥 + 1. 
Will these functions be particular or special solutions when we find the 

general integral? To search for it, we write the equation (I′′) in the form 

 

𝑑х 
 

 

𝑑р 

2 
− х = 

1 − р 

2 
 

 

1 − р 

 
and we will consider x as a function of the independent variable p. Integrating the 

resulting linear equation, we find 

𝑥 = − 1 + 
С2

 

(р−1)2 
(II) 

 

excluding equations (I′) and (II), we obtain the general integral 
2 

𝑦 = (С + √х + 1) 

 
The singular integral of the original equation will be 𝑦 = 0, since this 

solution cannot be obtained from the general one at any value of C. The function 

𝑦 = 𝑥 + 1 is not a special, but a particular solution; it is obtained from the 

general solution at 𝐶 = 0. 

 

Try to decide for yourself [3] 
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1. Integrate the equation 𝑦 = 𝑥 у′2 + у′2 

 
2. 𝑦 = 2𝑥𝑦′ + у′2 

 
3. 2𝑦(𝑦′ + 1) = 𝑥у′2 

 
4. 𝑦 = 𝑥 (1 + у′) + (𝑦′)2 

 
Answers. 

2 
1) (√𝑦 + √𝑥 + 1) = 𝐶 

2) 2) 𝑥 =  
𝐶  

− 
2 

𝑝,  𝑦 = 
3𝑝2 3 

2𝐶−𝑝3 
 

3𝑝 

 

𝑥 = 𝐶(𝑝 + 1) 
𝐶𝑝2 

 
𝑜𝑟  𝑦 = 

 
(𝑥−𝐶)2 

;
 

3) common decision { 𝑦 = 
2 

 

2𝐶 

𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑦 = 0, 𝑦 = −2𝑥 

 
4) Common decision 𝑥 = 𝐶𝑒−𝑝 − 2𝑝 + 2,  𝑦 = 𝐶(𝑝 + 1)𝑒−𝑝 − 𝑝2 + 2 

 
 

 
14 -§. First-order linear equations (variation method) 

 

The differential equation 𝑦′ = 𝑓(𝑥, 𝑦) is called linear if it is linear with 

respect to the desired function and its derivative y′, i.e. if it can be written as: [1] 

𝑦′ + 𝑃(𝑥)𝑦 = 𝑄(𝑥 ) (1) 

Examples of linear equations: 

𝑦′ + 𝑥2𝑦 = 𝑥5, 𝑦′ + 𝑥 + 𝑒𝑥𝑦 = 0,  𝑦′ = 𝑦 𝑒𝑡𝑐. 
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Definition. If in equation (1) the right-hand side 𝑄(𝑥) is not equal to zero, 

then this equation is called a linear inhomogeneous equation, or a linear equation 

with a right-hand side. If 𝑄(𝑥) ≡ 0 , then equation (1) is called a linear 

homogeneous equation, or an equation without a right-hand side. 

The equation 𝑦′ + 𝑃(𝑥)𝑦 = 0, obtained from equation (1) by replacing 

the function 𝑄(𝑥) by zero, is called a linear homogeneous equation corresponding 

to this inhomogeneous equation. 

We will consider the linear equation 

 

𝑦′ + 𝑃(𝑥)𝑦 = 𝑄(𝑥) 

 
on the interval 𝑎 < 𝑥 < 𝑏 continuity of the functions 𝑃(𝑥) 𝑎𝑛𝑑 𝑄(𝑥). 

Let us show that such an equation can be integrated in quadratures. 

Let us first take the linear homogeneous equation 

𝑦′ + 𝑃(𝑥)𝑦 = 0 (2) 

corresponding to a given heterogeneous one. 

This is an equation with separable variables. Separating the variables and 

integrating, we find: 

𝑑𝑦 = −𝑃(𝑥)𝑑𝑥, 
𝑦 

 
𝑙𝑛|𝑦| = − ∫ 𝑃(𝑥)𝑑𝑥 + 𝑙𝑛|𝐶|, 

𝑦 = 𝐶𝑒− ∫ 𝑃(𝑥)𝑑𝑥, where 

C is an arbitrary constant, different from zero. 

The solution y = 0, lost when separating the variables, is obtained from the 

relation 

 

Ratio 

𝑦 = 𝐶𝑒− ∫ 𝑃(𝑥)𝑑𝑥 at 𝐶 = 0. 

 

𝑦 = 𝐶𝑒− ∫ 𝑃(𝑥)𝑑𝑥 (3) 

 

where C is an arbitrary constant and is a general solution to equation (2) in the 

strip {𝑎 < 𝑥 < 𝑏, −∞ < 𝑦 < +∞}. 

To find solutions to linear inhomogeneous equation (1), we apply the 

method of variation of an arbitrary constant. We will look for a solution to 

equation (1) in the same form (3) as the solution to the corresponding 
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homogeneous equation. Then C will have to be considered non-constant, a function 

of 𝑥, 𝐶 = 𝐶(𝑥). This function 𝐶(𝑥) must be such that upon substitution 

 

𝑦 = 𝐶𝑒− ∫ 𝑃(𝑥)𝑑𝑥 and  𝑦′ = 𝐶′(𝑥)𝑒− ∫ 𝑃(𝑥)𝑑𝑥 − 𝐶(𝑥)𝑃(𝑥)𝑒− ∫ 𝑃(𝑥)𝑑𝑥 

 

in equation (1), it turned into the identity on the interval 𝑎 < 𝑥 < 𝑏. 
To determine the function C(x), we obtain an equation with separable 

variables: 

𝐶′(𝑥)𝑒− ∫ 𝑃(𝑥)𝑑𝑥 = 𝑄(𝑥). 

Integrating it, we find: 

С(𝑥) = ∫ 𝑄(𝑥)𝑒∫ 𝑃(𝑥)𝑑𝑥 𝑑𝑥 + 𝐶 

 
where 𝐶 is an arbitrary constant. 

For any value of constant C function 

𝑦 = 𝑒− ∫ 𝑃(𝑥)𝑑𝑥(∫ 𝑄(𝑥)𝑒∫ 𝑃(𝑥)𝑑𝑥𝑑𝑥 + 𝐶) (4) 

is a solution to equation (1). 

On the contrary, since the function 𝑒− ∫ 𝑃(𝑥)𝑑𝑥 is nonzero, any solution to 

equation (1) in the domain {𝑎 < 𝑥 < 𝑏, −∞ < 𝑦 < +∞} can be written as: 

𝑦 = 𝐶(𝑥)𝑒− ∫ 𝑃(𝑥)𝑑𝑥 

 

which means, in the form of (4) at some value of the constant. 

Relationship (4) is a general solution to equation (1) in the domain) 

{𝑎 < 𝑥 < 𝑏, −∞ < 𝑦 < +∞}. General solution of linear inhomogeneous equation (1) 

𝑦 = 𝑒− ∫ 𝑃(𝑥)𝑑𝑥(∫ 𝑄(𝑥)𝑒∫ 𝑃(𝑥)𝑑𝑥𝑑𝑥 + 𝐶) 
 

 

turns out to be equal to the sum of the general solution of the corresponding 

homogeneous equation ( C ) and the particular solution of this inhomogeneous 

equation 

(𝑒− ∫ 𝑃(𝑥)𝑑𝑥𝑒− ∫ 𝑃(𝑥)𝑑𝑥 ∙ ∫ 𝑄(𝑥)𝑒∫ 𝑃(𝑥)𝑑𝑥𝑑𝑥). 

 

Example 1. 𝑦′ − 2𝑥𝑦 = (𝑥 + 𝑦)𝑒𝑥
2 

- linear inhomogeneous  equation. The 

functions  𝑃(𝑥) = −2𝑥 and  𝑄(𝑥) = (𝑥 + 1)𝑒𝑥
2 

are continuous 
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х х 

everywhere.We first solve the linear homogeneous equation 𝑦′ − 2𝑥𝑦 = 0, 
corresponding to this equation: 

𝑑𝑦 
= 2𝑥𝑑𝑥, 𝑙𝑛|𝑦| = 𝑥2 + 𝑙𝑛|𝐶|, 𝑦 = 𝐶𝑒𝑥

2
 

𝑦 

 
We are looking for a general solution to this equation in the form: 

𝑦 = 𝐶(х)𝑒𝑥
2

 

Then 
 

 
2 2 

𝑦′ = 𝐶′(𝑥)е + 𝐶(𝑥)2хе 

 
Substituting y and 𝑦′ the equation 

𝑦′ − 2𝑥𝑦 = (𝑥 + 1)𝑒𝑥
2

 

 
after bringing similar terms, we get: 

 

 

where 

𝐶′(𝑥)ех
2  

= (𝑥 + 1)ех
2

 

 
(х + 1)2 

𝐶′(𝑥) = 𝑥 + 1, 𝐶(𝑥) = 
2 

 
 

 
+ С, 

where C is an arbitrary constant. 

The general solution to this equation in the entire XOY plane has the form: 

 

𝑦 = [
(х+1)2 

+ С] ех
2 
. ■ 

2 

 
Solution of linear equation(1). We will look for a solution to equation (1) 

in the form of the product of two functions fromx: 

 

𝑦 = 𝑢(𝑥)𝑣(𝑥) (5) 

One of these functions can be taken arbitrary, the other can be determined 

based on equation (1). 

Differentiating both sides of equality (2), we find 

 

𝑑𝑦 
 

 

𝑑𝑥 
= 𝑢 

𝑑
𝑣 

 
 

𝑑𝑥 

+ 𝑣 
𝑑𝑢 

 
 

𝑑𝑥 

 

Putting the resulting derivative expression into 𝑑 
𝑑𝑥 

equation (1), we will have 
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𝑑
𝑣 

𝑢 
𝑑𝑥 

or 

+ 𝑣 
𝑑𝑢 

 
 

𝑑𝑥 
+ 𝑃𝑢𝑣 = 𝑄, 

𝑢 (
𝑑𝑣 

+ 𝑃𝑣) + 𝑣 
𝑑𝑢 

= 𝑄 (6) 
𝑑𝑥 𝑑𝑥 

 
Let us choose a function v such that 

 
𝑑𝑣 + 𝑃𝑣 = 0 (7) 
𝑑𝑥 

 
Separating the variables in this differential equation with respect to the 

function v, we find 

 

 

Integrating, we get 

𝑑𝑣 
 

 

𝑣 
= −𝑃𝑑𝑥. 

−𝑙𝑛|𝐶1| + 𝑙𝑛|𝑣| = − ∫ 𝑃𝑑𝑥, 

or 

𝑣 = 𝐶1𝑒− ∫ 𝑃𝑑𝑥 

 
It is enough for us to have some nonzero solution to equation (7), then we 

take the function 𝑣(𝑥) 

𝑣(𝑥) = 𝑒− ∫ 𝑃𝑑𝑥(8) 

 

Some ∫ 𝑃𝑑𝑥 - where some kind of primitive. It is 𝑣(𝑥) ≠ 0 obvious that. 

Putting the found value into 𝑣(𝑥)equation (6), we get (considering , 

that 𝑑𝑣 + 𝑃𝑣 = 0) 
𝑑𝑥 

𝑣(𝑥) 

or 

𝑑𝑢 
 

 

𝑑𝑥 
= 𝑄(𝑥), 

𝑑𝑢 
= 

𝑄(𝑥)
,
 

where 

𝑑𝑥 𝑣(𝑥) 

𝑢 = ∫ 
𝑄(𝑥) 

 
 

𝑣(𝑥
) 

𝑑𝑥 + 𝐶. 

 
Substituting u and v into formula (5), we finally get 

 
𝑄(𝑥) 

𝑦 = 𝑣(𝑥) [∫ 
𝑣(𝑥) 

𝑑𝑥 + 𝐶], 
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or 

𝑦 = 𝑣(𝑥) ∫ 
𝑄(𝑥) 

𝑑𝑥 + 𝐶𝑣(𝑥)(9) 
𝑣(𝑥) 

 

Example 2. Solve the equation 
𝑑𝑦

 
2 
− 

 
𝑦 = (𝑥 + 1)3 

𝑑𝑥 𝑥 + 1 

Solution.We believe then 𝑦 = 𝑢𝑣, 
 

𝑑𝑦 
 

 

𝑑𝑥 
= 𝑢 

𝑑
𝑣 

 
 

𝑑𝑥 

+ 𝑣 
𝑑𝑢 

 
 

𝑑𝑥 

 

Putting the 𝑑 
𝑑𝑥 

expression in the original equation, we will have 

 

𝑢 
𝑑𝑣 

+ 𝑣 
𝑑𝑢 

−  
2 𝑢𝑣 = (𝑥 + 1)3, 

𝑑𝑥 𝑑𝑥 𝑥+1 

 

𝑢 (
𝑑𝑣 

−  
2 𝑣) + 𝑣 

𝑑𝑢 
= (𝑥 + 1)3. (10) 

𝑑𝑥 𝑥+1 𝑑𝑥 

 
To determine v we obtain the equation 

 

𝑑𝑣 
−  

2 𝑣 = 0 those 𝑑𝑣 = 
2𝑑𝑥

 

where 
𝑑𝑥 𝑥+1 𝑣 𝑥+1 

𝑙𝑛|𝑣| = 2𝑙𝑛|𝑥 + 1|, or 𝑣 = (𝑥 + 1)2 

 
Substituting the expression of the function 𝑣 into equation (10), we obtain 

the equation for determining u 

 
(𝑥 + 1)2 𝑑𝑢 

= (𝑥 + 1)3 or 𝑑𝑢 = 𝑥 + 1 

where 
𝑑𝑥  

 
𝑢 = 

 
(𝑥 + 1)2 

 
 

2 

 

 
+ 𝐶. 

𝑑𝑥 

The general integral of the given equation will have the form 

𝑦 = 
(𝑥+1)4 

+ 𝐶(𝑥 + 1)2 . ■ 
2 

 
Example 3. Find a general solution to the equation у′ + 3у = е2х. 
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( 

Solution. This equation is linear. Here 𝑃(𝑥) = 3, 𝑄(𝑥) = 𝑒2𝑥. First we solve 

the corresponding homogeneous equation 𝑦′ + 3𝑦 = 0. Separating the variables 

and integrating, we find 

𝑑𝑦 
 

 

𝑦 
= −3𝑑𝑥 

𝑙𝑛|𝑦| = −3𝑥 + 𝑙𝑛|𝐶1| or 𝑦 = ±𝐶1𝑒−3𝑥 = 𝐶𝑒−3𝑥 

 
We are looking for a general solution to this equation in the form 

𝑦 = 𝐶(𝑥)е−3х 
Differentiating, we have 

𝑦′ = 𝐶′(𝑥)𝑒−3𝑥 − 3𝐶(𝑥)𝑒−3𝑥. 

 

Substituting the expressions for y and y′ into this equation, we obtain 

 

𝐶′(𝑥)𝑒−3𝑥 = 𝑒2𝑥, 𝐶′(𝑥) = 𝑒5𝑥 𝑜𝑟 𝑑𝐶 = 𝑒5𝑥𝑑𝑥 
where 

𝐶(𝑥) 
1 

 

=  𝑒 
5 

5𝑥 + 𝐶2 

where 𝐶2 − is an arbitrary constant. The general solution to this equation has the 

form 

 

𝑦 = 𝐶(𝑥)𝑒−3𝑥 = 
1 

𝑒 
5 

5𝑥 + 𝐶2) 𝑒 −3𝑥 𝑜𝑟  𝑦 = 
1 

𝑒
 

5 
2𝑥 + 𝐶2𝑒 −3𝑥. ■

 

 

Try to decide for yourself [3] 

 

1. Solve equations. 𝑥𝑦′ + 𝑦 = 𝑒−𝑥 
 

2. Solve equations. 

 

 3. Solve equations. 

𝑦′ = 

 
′ 

𝑦 + 𝑐𝑜𝑠 
𝑦

 
𝑥 𝑥 

 
𝑦 𝑦 2 

( ) 
𝑦 = 4 + 

𝑥 
+ ( ) 

𝑥 
; 𝑦 1 = 2. 

 
4. Solve equations. (𝑥4 + 6𝑥2𝑦2 + 𝑦4)𝑑𝑥 + 4𝑥𝑦(𝑥2 + 𝑦2)𝑑𝑦 = 0; 𝑦(1) = 0 
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5. Solve equations. 3𝑦𝑠𝑖𝑛 ( 
3𝑥 

 

𝑦 
) 𝑑𝑥 + 

3𝑥 
𝑦 − 3𝑥𝑠𝑖𝑛 ( ) 

𝑦 
𝑑𝑦 = 0 

 
Answers. 

1) 𝑦 = 
1 (−𝑒−𝑥 + 𝐶) = − 

𝑒−𝑥 

+ 
𝐶

 

𝑥 𝑥 𝑥 
 

𝑦 
2) 1 + 𝑠𝑖𝑛 

𝑥 

𝑦 
= 𝐶𝑥𝑐𝑜𝑠  

𝑥 
 

3)  
𝑎𝑟𝑐𝑡𝑔 

0,5𝑦 
 

 

𝑥 

𝜋 
− 2𝑙𝑛𝑛|𝑥| =  

4 

4) 𝑥5 + 10𝑥3𝑦2 + 5𝑥𝑦4 = 1 
 

5) 𝑙𝑛|𝑦| − 𝑐𝑜𝑠 
3𝑥 

 
 

𝑦 
= 𝐶 
 

 
15 - §. Equations reducible to linear 

 

When integrating some first-order differential equations, the following 

remark can be used. [7] 

If the function 𝑦 = 𝜑(𝑥, 𝐶) outside some region is a general solution of the 

equation 

𝑦′ = 𝑓(𝑥, 𝑦), 

 
then the expression is the general integral of the differential equation 

𝑣(𝑦) = 𝜑(𝑥, 𝐶) 

[ ] 
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𝑣′(𝑦)𝑦′ = 𝑓(𝑥, 𝑣(𝑦)) (1) 

in the same area. 

By substituting into equation 𝑧 = 𝑣(𝑦) (1). 

If the 𝑦′ = 𝑓(𝑥, 𝑦) − linear differential equation is: 

 

𝑦′ + 𝑃(𝑥)𝑦 = 𝑄(𝑥) 

 
a is𝑣(𝑦)any differentiable function y, then the general integral of the equation 

𝑣′(𝑦)𝑦′ + 𝑃(𝑥)𝑣(𝑦) = 𝑄(𝑥) (2) 

outside of which area will be written as, 𝑣(𝑦) = 𝜑(𝑥, 𝐶) 

where 𝑦 = 𝜑(𝑥, 𝐶) is the general solution of equation (1) in the same region. 

Solving any equation 

 

𝑣′(𝑦)𝑦′ + 𝑃(𝑥)𝑣(𝑦) = 𝑄(𝑥) 
 

using substitution it is reduced 𝑣(𝑦) = 𝑧 to the solution of a linear equation. 

For example, the Bernoulli equation, that is, the equation 

 

𝑦′ + 𝑃(𝑥)𝑦 = 𝑄(𝑥)𝑦𝛼 (3) 

 

where α- is any real number, different from zero and one, reduced to linear after 

preliminary division of both parts of the equation by α and subsequent substitution 

𝑧 = 𝑦1−𝛼 . 

If 

𝑧 = 𝑦1−𝛼, that 𝑧′ = (1 − 𝛼) 𝑦−𝛼𝑦′. 

 

Substituting z and z′ into the equation 

 

𝑦−𝛼𝑦′ + 𝑃(𝑥)𝑦1−𝛼 = 𝑄(𝑥) 

 
obtained by dividing by 𝑦𝛼, we have: 

 

 

or, also, 

1 
 

 

1 − 𝛼 
𝑧′ + 𝑃(𝑥)𝑧 = 𝑄(𝑥) 

𝑧′ + (1 − 𝛼)𝑃(𝑥)𝑧 = (1 − 𝛼)𝑄(𝑥) 
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This is a linear equation in z. If 𝑃(𝑥) and 𝑄(𝑥) are continuous, it integrates 

by quadrature. Finding its general solution and 𝑧 = 𝑦1−𝛼  substituting, we obtain a 

set of solutions to the Bernoulli equation. 

Example.Bernoulli Equation 

𝑦′ + 𝑥𝑦 = 𝑥3𝑦3 (𝛼 = 3) 

 
after substitution it reduces to the linear equation  𝑦−2 = 𝑧 

 

 
Solving it, we find 

𝑧′ − 2𝑥𝑧 = −2𝑥3 
 

𝑧 = 𝑥2 + 1 + 𝐶𝑒𝑥
2

 

 
where C is an arbitrary constant. The set of solutions to this equation: 

 

𝑦−2 = 𝑥2 + 1 + С𝑒𝑥
2  

and 𝑦 = 0. ■ 

 

 

 

 

16 - §. Linear equations of the first order 

 

Definition: First order linear equationis an equation that is linear with 

respect to an unknown function and its derivative. It looks like [9] 

𝑑𝑦 + 𝑃(𝑥)𝑦 = 𝑄(𝑥) (1) 
𝑑𝑥 

 
where 𝑃(𝑥) and 𝑄(𝑥) - are given continuous functions of otx (or constants). 

Solution of linear equation (1).We will seek a solution to equation (1) in 

the form of a product of two functions otx: 
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𝑦 = 𝑢(𝑥)𝑣(𝑥) (2) 

 

One of these functions can be taken arbitrary, the other will be determined 

based on equation (1). 

Differentiating both sides of equality (2), we find 

 

𝑑𝑦 
 

 

𝑑𝑥 
= 𝑢 

𝑑
𝑣 

 
 

𝑑𝑥 

+ 𝑣 
𝑑𝑢 

 
 

𝑑𝑥 

 

Substituting  the  resulting  derivative  expression  into 𝑑 
𝑑𝑥 

equation (1), we 

will have 

 

 

or 

 
𝑑
𝑣 

𝑢 
𝑑𝑥 

 
+ 𝑣 

𝑑𝑢 
 

 

𝑑𝑥 

 
+ 𝑃𝑢𝑣 = 𝑄 

𝑢 ( 
𝑑𝑣 

+ 𝑃𝑣) + 𝑣 
𝑑𝑢
 = 𝑄 (3) 

𝑑𝑥 𝑑𝑥 

let us choose a function v such that 

 
𝑑𝑣 + 𝑃𝑣 = 0 (4) 
𝑑𝑥 

 
Separating the variables in this differential equation with respect to the 

functionv, we find 

 

 

Integrating, we get 

𝑑𝑣 
 

 

𝑣 
= − 𝑃𝑑𝑥 

− 𝑙𝑛 = −|𝐶1| + 𝑙𝑛|𝑣| ∫ 𝑃𝑑𝑥 

or 

𝑣 = 𝐶1𝑒− ∫ 𝑃𝑑𝑥 

Since we only need some nonzero solution to equation (4), then the function 

 

𝑣(𝑥) = 𝑒− ∫ 𝑃𝑑𝑥 (5) 

some ∫ 𝑃𝑑𝑥 - where some kind of primitive. Obviously, 𝑣(𝑥) ≠ 0 . Substituting 

the found value of v(x) into equation (3), we obtain (taking into account that 𝑑𝑣 + 
𝑑𝑥 

𝑃𝑣 = 0) 
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𝑣(х) 𝑑𝑢 
= 𝑄(𝑥) or 𝑑𝑢 = 

𝑄(𝑥)
 

where 

𝑑𝑥 
 

 

𝑢 = ∫ 

 
𝑄(𝑥) 

 
 

𝑣(𝑥
) 

𝑑𝑥 
 

 

𝑑𝑥 + 𝐶 

𝑣(𝑥) 

 
Substituting u and v into formula (2), we finally get 

𝑄(𝑥) 
𝑦 = 𝑣(𝑥) [∫ 

𝑣(𝑥) 
𝑑𝑥 + 𝐶] 

or 

𝑦 = 𝑣(𝑥) ∫ 
𝑄(𝑥) 

𝑑𝑥 + 𝐶 𝑣(𝑥) (6) 
𝑣(𝑥) 

 

Example. Solve the equation 
𝑑𝑦
 
2 

− 

 
у = (х + 1)3 

𝑑𝑥 х + 1 
Solution.We assume 𝑦 = 𝑢𝑣, then 

 

𝑑𝑦 
 

 

𝑑𝑥 
= 𝑢 

𝑑𝑣 
+ 

𝑑𝑥 

𝑑𝑢 
𝑣 

𝑑𝑥 
 

Substituting the expression 𝑑 
𝑑𝑥 

into the original equation, we will have 

 

𝑑𝑣 𝑑𝑢 2 
𝑢 + 𝑣 − − 𝑢𝑣 = (х + 1)3 

𝑑𝑥 

𝑑
𝑣 

𝑢 ( 
𝑑𝑥 

𝑑𝑥 

2 
− 

х + 1 

𝑥 + 1 

𝑣) + 
𝑑𝑢 

𝑣 = (х + 1)3 
𝑑𝑥

To determine v we obtain the equation 

 

𝑑𝑣 
 

 
− 

2  
𝑣 = 0, that is 𝑑𝑣 = 

2𝑑𝑥 
, 

where 
𝑑𝑥 х+1 𝑣 𝑥+1 

𝑙𝑛|𝑣| = 2𝑙𝑛|𝑥 + 1| 𝑜𝑟 𝑣 = (х + 1)2. 

 

Substituting the expression of the function v into equation (7), we obtain the 

equation for determining u 
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(х + 1)2 𝑑𝑢 
= (х + 1)3 or 𝑑𝑢 = 𝑥 + 1, 

where 
𝑑𝑥 

 

𝑢 = 
(𝑥+1)2 

+ 𝐶 . 
2 

𝑑𝑥 

 
Consequently, the general integral of the given equation will have the form 

 

𝑦 = 
(𝑥 + 1)4 

 
 

2 
+ 𝐶(𝑥 + 1)2 

Linear equations with constant coefficients are common in these 

applications. 

 

 

Where a and b - are constants. 

𝑑𝑦 + 𝑎𝑦 = 𝑏 (8) 
𝑑𝑥 

If you can solve using substitution (2) or by separating variables: 

 

𝑑𝑦 = (− 𝑎𝑦 + 𝑏 )𝑑𝑥, 
 

𝑑𝑦 
 

−𝑎𝑦+𝑏 
= 𝑑𝑥, 

 
1 

− 
𝑎 

𝑙𝑛|−𝑎𝑦 + 𝑏| = 𝑥 + 𝐶1 

ln|−𝑎𝑦 + 𝑏| = −(𝑎𝑥 + 𝐶∗) 

 
∗ 

where С∗ = 𝑎С1 , − 𝑎𝑦 + 𝑏 = 𝑒−(𝑎𝑥+𝐶 ), 

 

 

orfinally 

𝑦 = − 
1

 
𝑎 

𝑒−(𝑎𝑥+𝐶∗ ) + 𝑏 
,
 

𝑎 

𝑦 = 𝐶𝑒−𝑎𝑥 + 
𝑏

 
𝑎 

where denoted by − 
1 

𝑒−𝐶
∗ 

= С . This is the general solution to equation (8). 
𝑎 

 
 

Try to decide for yourself [3] 
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1. Integrate the equation 𝑦′𝑐𝑜𝑠2𝑥 + 𝑦 = 𝑡𝑔𝑥 with the initial condition 

𝑦(0) = 0. 
 

2. Integrate the equation. 𝑦′ + 
𝑥𝑦

 
1−𝑥2 

= 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 + 𝑥 

 
3. Solve the equation 𝑥𝑦′ − 𝑦 = х2𝑐𝑜𝑠𝑥 

 
Answers. 

 

1) 𝑦 = 𝑡𝑔𝑥 − 1 + 𝑒−𝑡𝑔𝑥 

 
2) 𝑦 = 𝑐ℎ𝑥(𝑠ℎ𝑥 + 𝐶) 

 

3) 𝑦 = √1 − 𝑥2 [
1 

(𝑎𝑟𝑐𝑠𝑖𝑛𝑥)2 − √1 − 𝑥2 + 𝐶] 
2 
 

 
17 - §. Special solutions of a first order differential equation 

 

Let the differential equation 

𝐹(𝑥, 𝑦, 
𝑑𝑦

) = 0 (1) 
𝑑𝑥 

has a common integral 

Ф( 𝑥, 𝑦, 𝐶) = 0 (2) 

 

Let us assume that the family of integral curves corresponding to equation 

(2) has an envelope. Let us prove that this envelope is also an integral curve of the 

differential equation (1). [1] 
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С 

Indeed, at each of its points the envelope touches some curve of the family, 

that is, there is a common tangent. Consequently, at each common point the 

envelope and curve of the family have the same values of the quantities  𝑥, 𝑦, 𝑦′. 

But for a curve from the family, the numbers 𝑥, 𝑦, 𝑦′ satisfy equation (1). 

Therefore, the same equation is satisfied by the abscissa, ordinate, and slope of 

each point of the envelope. But this means that the envelope is a solution to this 

differential equation. 

Since the envelope is not a family curve, its equation cannot be obtained 

from the general integral (2) for any particular value of C. A solution to a 

differential equation that is not obtained from a general integral and at what value 

of C and has as its graph the envelope of the family of integral curves included in 

the general solution is called a special solution to the differential equation. 

Let the general integral be known 

 

𝐹(𝑥, 𝑦, 𝐶) = 0 

 
excluding C from this equation and  Eq. 

Ф′ (x, y, C) = 0, 

we get the equation  

𝜓(𝑥, 𝑦) = 0. 
If this function satisfies a differential equation, then it is a special integral. 

Note that at least two integral curves pass through each point of the curve 

representing a special solution, that is, at each point of the special solution the 

uniqueness of the solution is violated. 

Note that the point at which the uniqueness of the solution to the differential 

equation is violated, that is, the point through which at least two integral curves 

pass, is called a singular point. Thus, a special solution consists of special points. 

 

Example. Find a special solution to the equation 

 

𝑦2(1 − 𝑦′2) = 𝑅2 

 
Solution. Let's find its general integral. Let us resolve the equation relative to y′: 

 

 
 

𝑑𝑦 
 

 

𝑑𝑥 

√𝑅2 − 𝑦2 
= ± 

𝑦 

 
Separating the variables, we get 
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𝑦𝑑𝑦 
 = 𝑑𝑥 

±√𝑅2 − 𝑦2 

 
From here, integrating, we find the general integral 

 

(𝑥 − 𝐶)2 + 𝑦2 = 𝑅2 

 
It is easy to see that the family of integral lines is a family of circles of 

radius R with the center of the abscissa. The envelope of the family of curves will 

be a pair of straight lines 𝑦 = ±𝑅 . 

The functions  𝑦 = ±𝑅 satisfy the differential equation. Therefore, this is a 

special integral. 

 

 

18 - §. First-order equation, unresolved 

with respect to the derivative 

 

First order equations not resolved with respect to the derivative, that is, 

equations of the form: 

𝐹(𝑥, 𝑦, 𝑦′ ) = 0 (1) 

 

The equation 𝐹(𝑥, 𝑦, 𝑦′ ) = 0 implicitly specifies at each point (𝑥, 𝑦) of 

some region of the 𝑋𝑂𝑌 plane one or more real values of y′. If at each such point 

we construct segments with angular coefficients equal to the value at this point, we 

obtain the so-called direction field, defined by the equation 𝐹(𝑥, 𝑦, 𝑦′) = 0. [9] 

To integrate equation (1) means to find all its solutions, either explicitly or 

implicitly. Geometrically, this means finding all the curves whose tangent at each 

point coincides with one of the field directions at that point. 

Suppose that outside some region D of the 𝑋𝑂𝑌 plane, the equation 
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0 

𝐹(𝑥, 𝑦, 𝑦′ ) = 0 implicitly specifies m different real values of y′: 

 

𝑦′ = 𝑓1(𝑥, 𝑦), 𝑦′ = 𝑓2(𝑥, 𝑦), … , 𝑦′ = 𝑓𝑚(𝑥, 𝑦) (2) 

 

In this case, the direction field of the equation 𝐹(𝑥, 𝑦, 𝑦′) = 0 in the region D 

can be considered as a superposition of the m fields of equations (2) resolved with 

respect to the derivative. All solutions to these equations are solutions to this 

equation in region D. 

Let Ф1(𝑥, 𝑦, 𝐶) = 0, Ф2(𝑥, 𝑦, 𝐶) = 0, … , Ф𝑚(𝑥, 𝑦, 𝐶) = 0 – general 

integrals of equations (2) in the domain 𝐷2. The set of these common integrals is 

called the common integral of the equation 𝐹(𝑥, 𝑦, 𝑦′ ) = 0 in the domain D. 

Example 1. The equation 𝑦′2 − 2𝑥𝑦′ = 0  is not resolved with respect to the 

derivative. Resolving it, we obtain 𝑦′ = 0 and 𝑦′ = 2𝑥. General solutions of 

these equations throughout the 𝑋𝑂𝑌 plane have the form: 

𝑦 = 𝐶 and 𝑦 = 𝑥2 + 𝐶 (C - is an arbitrary constant). Therefore, the general 

integral of this equation in the 𝑋𝑂𝑌 plane is given by two relations: 

𝑦 = 𝐶, 𝑦 = 𝑥2 + 𝐶. 

 
The direction field defined by this equation is obtained by superimposing the 

fields of the equations 𝑦′ = 0 and  𝑦′ = 2𝑥. Through each point (х0, у0)  of the 

𝑋𝑂𝑌 plane there pass two integral curves - a straight line 

𝑦 = 𝑦0 and parabola 𝑦 = 𝑥2 + 𝐶0, where 𝐶0 = 𝑦0 − 𝑥2 . (Fig. 1) 
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Example 2. The equation у′3 − 1 = 0 is not resolved with respect to the 

derivative. Resolving it relative to 𝑦′, we obtain three values: 

𝑦′ = 1, 𝑦′ = 
−1 + √3𝑖 

, 𝑦′ = 
−1 − √3𝑖 

2 2 
- one real and two imaginary. 

Since we are only interested in real solutions of the equation, we consider only 

the equation 𝑦′ = 1. Its general solution over the entire 𝑋𝑂𝑌 plane has the form: 

𝑦 = 𝑥 + 𝐶, 

 
where C is an arbitrary constant. All (real) solutions of this equation are covered 

by the relation 

𝑦 = 𝑥 + 𝐶. 

Through each point (𝑥0, 𝑦0) of the 𝑋𝑂𝑌 plane one integral curve of this 

equation passes: 

𝑦 = 𝑥 + 𝐶0, 

where 𝐶0 = 𝑦0 − 𝑥0. (Fig. 2) 
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Example 3. The equation у′3 − 4уу′ = 0 defines at each point of the upper half- 

plane (𝑦 > 0) three real values of 𝑦′: 

 
  

 

 
plane: 

𝑦′ = 0, 𝑦′ = 2√у, 𝑦′ = −2√у 

Solving these equations, we obtain their general integrals in the upper half- 

 

у = С, √у = х + С (х + С > 0), √у = −х + С (−х + С > 0), 
 

where C- is an arbitrary constant. 

In the upper half-plane, the general integral of this equation is given by the 

relations: 

у = С, √у = х + С (х + С > 0), √у = −х + С (−х + С > 0). 
 

Three integral curves of this equation pass through each point (𝑥0, 𝑦0) of the 

upper half-plane: 
 

у = у0, √у = х − х0 + √у0 , √у = −х + х0 + √у0 

 
(straight line and “branches” of two parabolas) (Fig. 3) 
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In the lower half-plane (𝑦 < 0) the equation у′3 − 4уу′ = 0 has only one 

real solution relative to y′: 

 

 

form: 

𝑦′ = 0. 
The general solution to the equation у′ = 0 in the lower half-plane has the 

 

𝑦 = 𝐶. 
In the lower half-plane, the general integral of this equation has the form 

𝑦 = 𝐶 

Through each point ( 𝑥0 , 𝑦0 ) of the lower half- plane there passes one 

integral curve - straight line 𝑦 = 𝑦0. 
19 - §. An equation that does not contain an explicit function 

 

 

form: 

An equation that does not contain the explicitly sought function has the 

 

𝐹( 𝑥, 𝑦′) = 0 (1) 

If this equation can be represented as: 

𝑥 = 𝑓(𝑦′) (2) 

then all solutions to this equation can be found using a single square in parametric 

form. [9] 

Indeed, we will consider the derivative of y′ as a parameter: 

𝑦′ = 𝑡. Let 𝑦 = 𝜑(𝑥) be any solution of equation (2). The expression x through 

the parameter t for this solution is given by the equation itself: 

𝑥 = 𝑓(𝑡). 
Let's find a parametric expression for 𝑦. 
Because 

𝑦′ = 
𝑑𝑦 

, that 𝑑𝑦 = 𝑦′𝑑𝑥 
𝑑𝑥 

Replacing y′ and dx with expressions through 𝑡: 

 
𝑦′ = 𝑡 , 𝑑𝑥 = 𝑓′(𝑡)𝑑𝑡 
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we get: 

 

whence, integrating, we find: 

 

 

where C - is a number. 

 

𝑑𝑦 = 𝑡𝑓′(𝑡)𝑑𝑡 

 
𝑦 = ∫ 𝑡𝑓′(𝑡)𝑑𝑡 + 𝐶 

Any solution to equation (2) can be written in parametric form as: 

 
𝑥 = 𝑓(𝑡) 

{ 
𝑦 = ∫ 𝑡𝑓 ′(

𝑡 
)𝑑𝑡 + 𝐶 

(3) 

 

where C - is a number. 

If we exclude t from relations (3), we obtain (in explicit or implicit form) the 

solution 𝑦 = 𝜑(𝑥). 
By direct substitution into equation (2), we make sure that for any value of 

the constant C, relations (3) determine the solution to this equation. 

Relation (3), where C is an arbitrary constant, covers all solutions of 

equation (2). 

Example 1. The equation 𝑥 = 𝑦′ + 𝑒𝑦
′ 
cannot be resolved relative to 𝑦′ in 

elementary functions, but it is already resolved relative to 𝑥. Let us find its 

solutions in parametric form. 

We accept 𝑦′ = 𝑡 parameter. Then 

 

𝑥 = 𝑡 + 𝑒𝑡, 𝑑𝑥 = (1 + 𝑒𝑡)𝑑𝑡, 𝑑𝑦 = 𝑦′𝑑𝑥, 𝑑𝑦 = 𝑡(1 + 𝑒𝑡)𝑑𝑡 
 

𝑦 = ∫ 𝑡(1 + 𝑒𝑡)𝑑𝑡 + 𝐶 = 
𝑡2 

 
 

2 
+ 𝑡𝑒𝑡 − 𝑒𝑡 + 𝐶 

A set of solutions to this equation in parametric form 

 

 
{ 

𝑦 = 

𝑥 = 𝑡 + 𝑒𝑡 
𝑡2 

+ 𝑒𝑡(𝑡 − 1) + 𝐶 
2 

 
Example 2.The equation у′2 = х can also be solved by introducing a parameter. 

Let 

 

 

that is 

𝑦′ = 𝑡, 𝑡ℎ𝑒𝑛 𝑥 = 𝑡2 , 𝑑𝑥 = 2𝑡𝑑𝑡, 𝑑𝑦 = 𝑦′𝑑𝑥, 

 
𝑑𝑦 = 2𝑡2𝑑𝑡 
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5. 𝑦 ′ 

which means 

 

 

where C- is any number. 

 

𝑦 = 
2 

𝑡3 + 𝐶, 
3 

 
form: 

The set of solutions to the equation у′2 = х in parametric form has the 

 
𝑥 = 𝑡2 

{
y = 

2 
𝑡3 + 𝐶 3 

 
Excluding the parameter 𝑡, it is easy to obtain solutions to this equation in the 

form: 

𝑦 = ± 

 

 
2 𝑥2 + 𝐶.■ 
3 

 

 
Try to decide for yourself [3] 

 

Integrate the equation. 

1. 𝑥 = 𝑦′𝑠𝑖𝑛𝑦′ + 𝑐𝑜𝑠𝑦′ 

2. 𝑦′ = 𝑎𝑟𝑐𝑡𝑔 
𝑦

 
𝑦′2 

 
3. 𝑥 = 𝑦′ + 𝑙𝑛𝑦′ 

 

4. 𝑎𝑟𝑐𝑠𝑖𝑛 
𝑥

 
𝑦′ = 𝑦′ 

 

 
′ 

𝑦 = 𝑒 (𝑦 − 1) 

 
6. 𝑥 = 2(𝑙𝑛𝑦′ − 𝑦′) 

 
Answers. 

 
𝑥 = 𝑝𝑠𝑖𝑛𝑝 + 𝑐𝑜𝑠𝑝 

1) { 
𝑦 = (𝑝2 − 2)𝑠𝑖𝑛𝑝 + 2𝑝𝑐𝑜𝑠𝑝 + 𝐶 

3 
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2) { 𝑦 = 𝑝2𝑡𝑔𝑝 

𝑥 = 𝑝𝑡𝑔𝑝 − 𝑙𝑛𝑐𝑜𝑠𝑝 + 𝐶 

 

3) 𝑥 = √2(𝑦 − 𝐶) − 1 + ln [√2(𝑦 − 𝐶) − 1] 
 

4) 𝑥 = 𝑝𝑠𝑖𝑛𝑝; 𝑦 = (𝑝2 − 1)𝑠𝑖𝑛𝑝 + 𝑝𝑐𝑜𝑠𝑝 + 𝐶 

 
5) 𝑥 = 𝑒𝑝 + 𝐶,  𝑦 = 𝑒𝑝(𝑝 − 1) 𝑜𝑟 𝑦 = (𝑥 − 𝐶)[ln(𝑥 − 𝐶) − 1] 

 

6) 𝑥 = 2(𝑙𝑛𝑝 − 𝑝);  𝑦 = 2𝑝 − 𝑝2 + 𝐶 

 
20 - §. Equation that does not contain an explicit independent variable 

 

 

form: 

An equation that does not contain an explicitly independent variable has the 

 

𝐹(𝑦, 𝑦′) = 0 

 
If this equation can be solved for y: 

 

𝑦 = 𝑓 (𝑦′) (1) 

 

then its solutions can be found using quadratures in parametric form. [9]. 

Indeed, let 𝑦 = 𝜑(𝑥) − be a solution to equation (1), along which 

𝑦′ ≠ 𝑐𝑜𝑛𝑠𝑡. We choose again 𝑦′ the parameter: 𝑦′ = 𝑡2. Then for this solution 

𝑦 = 𝑓(𝑡), 𝑑𝑦 = 𝑓 ′(𝑡)𝑑𝑡  , 𝑑𝑥 = 

which means 

𝑑𝑦 
= 

𝑦 

𝑓′(𝑡
) 

 
 

𝑡 

𝑑𝑡 

 

 
where 𝐶- is a number. 

𝑥 = ∫ 
𝑓′(𝑡

) 
 

 

𝑡 

𝑑𝑡 + 𝐶 

Any solution of equation (1) of the indicated type can be written in 

parametric form: 
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𝑥 = ∫ 
𝑓′(𝑡) 

𝑑𝑡 + 𝐶 
{ 𝑡 

𝑦 = 𝑓(𝑡) 
(2) 

 

By direct substitution into equation (1) we are convinced that for any value of the 

constant C, relations (2) determine the solution to this equation. 

Relations (2), where C is an arbitrary constant, cover all solutions of equation (1), 

except, perhaps, solutions along which the derivative y′ is constant. 

If along some solution 𝑦 = 𝜑(𝑥) the derivative is constant, then this solution has 

the form 

𝑦 = 𝑎𝑥 + 𝑏 
where a and b - are some numbers. 

Substituting equation (1), we get 

 

𝑎𝑥 + 𝑏 ≡ 𝑓(𝑎),  𝑎 = 0, 𝑏 = 𝑓(0). 

 
To relation (2), in the case where 𝑓(0) makes sense, it is necessary to add 

the solution 𝑦 = 𝑓(0). 
Example. 𝑦 = 𝑦′ + 𝑙𝑛𝑦′- an incomplete equation that is unresolved with respect 

to the derivative. We will solve it in parametric form. 

Solution. Let 𝑦′ = 𝑡 - parameter. Then 
 

𝑦 = 𝑡 + 𝑙𝑛𝑡, 𝑑𝑦 = (1 + 
1 
) 𝑑𝑡 

𝑡 

𝑑𝑦 1 1 

 
which means 

𝑑𝑥 = 
𝑡 

, 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑑𝑥 = (
𝑡 

+ 
𝑡2) 𝑑𝑡 

1 

 
Ratios 

𝑥 = 𝑙𝑛𝑡 − 
𝑡 

+ 𝐶. 

1 

{𝑥 = 𝑙𝑛𝑡 − 
𝑡 

+ 𝐶 

𝑦 = 𝑡 + 𝑙𝑛𝑡 

where C is an arbitrary constant, cover all solutions of this equation. 

 

Try to decide for yourself [3] 

Solve equations. 
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4. ′  

 
 

1. 𝑦√(1 + 𝑦′2) = 𝑦′ 

2. 𝑥 = 𝑒2𝑦
′
(2𝑦′2 − 2𝑦′ + 1) 

3. 𝑦 = 𝑦′𝑙𝑛𝑦 
′ 

𝑥 = 𝑦 (1 + 𝑒 ) 
5. 𝑥 = 2𝑦′ + 3𝑦′2 

 
Answers. 

1)𝑥 = ln [
√1+p2−1

] + 
p 

+ C, 𝑦 = 
𝑝

 
p √1+p2 √1+𝑝2 

2) 𝑥 = 0,5𝑙𝑛2𝑝 + 𝑙𝑛𝑝 + 𝐶, 𝑦 = 𝑝𝑙𝑛𝑝 

 
3) 𝑥 = 𝑝(1 + 𝑒𝑝),  𝑦 = 0,5𝑝2 + (𝑝2 − 𝑝 + 1)𝑒𝑝 + 𝐶 

 
4) 𝑥 = 𝑒2𝑝(2𝑝2 − 2𝑝 + 1), 𝑦 = 𝑒2𝑝(2𝑝3 − 3𝑝2 + 3𝑝 − 1,5) + 𝐶 

 
5) 𝑥 = 2𝑝 + 3𝑝2, 𝑦 = 2𝑝3 + 𝑝2 + 𝐶 

21 - §. Linear homogeneous equations of the second order with constant 

coefficients 

 

We have a linear homogeneous equation of the second order 

 

𝑦′′ + р𝑦′ + 𝑞𝑦 = 0 (1) 

where p and q are constant real numbers. To find the general integral of this 

equation, it is enough, as was proven above, to find two linearly independent 

partial solutions. [1] 

We will look for private solutions in the form 

 

 

Then 

𝑦 = 𝑒𝑘𝑥, where 𝑘 = 𝑐𝑜𝑛𝑠𝑡;  (2) 

 

𝑦′ = 𝑘𝑒𝑘𝑥,  𝑦′′ = 𝑘2𝑒𝑘𝑥 

 
Substituting the resulting derivative expressions into equation (1), we find 

𝑒𝑘𝑥(𝑘2 + 𝑝𝑘 + 𝑞) = 0 

 
Because 𝑒𝑘𝑥 ≠ 0, that means 

𝑘2 + 𝑝𝑘 + 𝑞 = 0 (3) 
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, 

1 

Therefore, if 𝑘 satisfies equation (3), then 𝑒𝑘𝑥  will be a solution to 

equation (1). Equation (3) is called a characteristic equation in relation to equation 

(1). 

The characteristic equation is a quadratic equation with two roots; denote 

them by 𝑘1 and 𝑘2. Wherein 

 
  

𝑝 

𝑘1 = − 
2 

+ √
𝑝2 

4 

𝑝 

− 𝑞 𝑘2 = − 
2 

− √𝑝2 

4 
− 𝑞 

 
I. 𝑘1 and 𝑘2are real and, moreover, unequal numbers (𝑘1 ≠ 𝑘2); 

II. 𝑘1 and 𝑘2 are complex numbers; 

III. 𝑘1 and 𝑘2 are real equal numbers (𝑘1= 𝑘2 ). 
I. The roots of the characteristic equation are real and different: 

𝑘1 ≠ 𝑘2. In this case, the particular solutions will be the functions 

 

𝑦1 = 𝑒𝑘1х , 𝑦2 = 𝑒𝑘2х 

These solutions are linearly independent, since 

y2 ek2x 
( )

 

y 
= 

ek1x = e k2−k1 х ≠ const 

 
Therefore, the general integral has the form 

 

𝑦 = 𝐶1𝑒𝑘1𝑥 + 𝐶2𝑒𝑘2𝑥 

 

Example 1. Given equation  

𝑦′′ + 𝑦′ − 2у = 0 

 
The characteristic equation has the form 

 

𝑘2 + 𝑘 − 2 = 0 

 
We find the roots of the characteristic equation: 

 
 

𝑘 = − 
1 

± √
1 

+ 2, 𝑘  = 1 , 𝑘 = −2 
1,2 2 4 1 2 

Generalintegralflattery 

 

𝑦 = 𝐶1𝑒𝑥 + 𝐶2𝑒−2𝑥. ■ 

 

II. The roots of the characteristic equation are complex. 
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Since complex roots are pairwise conjugate, we denote 

𝑘1 = 𝛼 + 𝑖𝛽, 𝑘2 = 𝛼 − 𝑖𝛽 

 
 

where 𝛼 = − 
р

 
2 

, 𝛽 = √𝑞 − 
𝑝2

 

4 

 
Particular solutions can be written in the form 

 

𝑦1 = 𝑒(𝛼+𝑖𝛽)𝑥, 𝑦2 = 𝑒(𝛼−𝑖𝛽)𝑥 (4) 

 

These are complex functions of the real argument that satisfy the differential 

equation (1). 

If any complex function has a real argument 

𝑦 = 𝑢(𝑥) + 𝑖𝑣(𝑥) (5) 

 

satisfies equation (1), then this equation is satisfied by the functions 𝑢(𝑥) and 

𝑣(𝑥). 
Indeed, substituting expression (5) into equation (1), we will have 

 

[𝑢(𝑥) + 𝑖𝑣(𝑥)]′′ + 𝑝[𝑢(𝑥) + 𝑖𝑣(𝑥)]′ + 𝑞[𝑢(𝑥) + 𝑖𝑣(𝑥)] ≡ 0 
or 

(𝑢′′ + 𝑝𝑢′ + 𝑞𝑢) + 𝑖(𝑣′′ + 𝑝𝑣′ + 𝑞𝑣) ≡ 0 

 
But the complex function is equal to zero if and only if the real part and the 

imaginary part are equal to zero, that is 

 

𝑢′′ + 𝑝𝑢′ + 𝑞𝑢 = 0, 𝑣′′ + 𝑝𝑣′ + 𝑞𝑣 = 0 

 
𝑢(𝑥) and 𝑣(𝑥) are solutions of the equation. 

Let us rewrite complex solutions (4) in the form of the sum of the real 

imaginary part: 

 

𝑦1 = 𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 + 𝑖𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥 , 𝑦2 = 𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 − 𝑖𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥 

 
As shown by partial solutions of equation (1), there will be real functions 

 

у̃1 = 𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥, у̃2 = 𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥 (6) 

 

The functions are linearly independent, since 𝑦̃1 and 𝑦̃2 
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̅�̅�1̅ 
= 

̅�̅�2̅ 

𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 

𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥 
= 𝑐𝑡𝑔𝛽𝑥 ≠ 𝑐𝑜𝑛𝑠𝑡 

 
Consequently, the general solution to equation (1) in the case of complex roots of 

the characteristic equation has the form 

 

𝑦 = 𝐶1 у̅1 + С 2 ̅у̅2̅ = С1𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 + С2𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥 
or 

𝑦 = 𝑒𝛼𝑥(С1𝑐𝑜𝑠𝛽𝑥 + С2𝑠𝑖𝑛𝛽𝑥 ) (7) 

 

where 𝐶1 and 𝐶2 are arbitrary constants. 

An important special case of solution (7) is the case when the roots of the 

characteristic equation are pure imaginary. 

This occurs when in equation (1) 𝑝 = 0, the ion has the form 

 

𝑦′′ + 𝑞𝑦 = 0 
The characteristic equation (3) takes the form 

 

𝑘2 + 𝑞 = 0 , 𝑞 > 0 

 
Roots of the characteristic equation 

 

𝑘1,2 = ± 𝑖 √𝑞 = ±𝑖𝛽, 𝛼 = 0 

 
Solution (7) takes the form 

 

𝑦 = С1𝑐𝑜𝑠𝛽𝑥 + С2𝑠𝑖𝑛𝛽𝑥 
 

Example 2.Given equation  

𝑦′′ + 2𝑦′ + 5𝑦 = 0 

 
Find a general integral and a particular solution that satisfies the initial 

conditions у|х=0 = 0, у′|х=0 = 1. Construct a graph. 

Solution.1) write the characteristic equation 

 

 

and let's find its roots 

𝑘2 + 2𝑘 + 5 = 0 

 
𝑘1 = −1 + 2𝑖, 𝑘2 = −1 − 2𝑖 
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2 

1 

hence the general integrality 

 

𝑦 = 𝑒−𝑥(С1𝑐𝑜𝑠2𝑥 + С2𝑠𝑖𝑛2𝑥 ) 

 
2) we will find a particular solution that satisfies these initial conditions and 

determine the corresponding values of 𝐶1 and 𝐶2. 

Based on the first condition we find: 

 

0 = (𝑒−0С1cos (2 ∙ 0) + С2sin (2 ∙ 0)) 

 
whence 𝐶1 = 0. Noticing that 

 

𝑦′ = 𝑒−𝑥2С2𝑐𝑜𝑠2𝑥 − е−хС2𝑠𝑖𝑛2𝑥 ) 
 

from the second condition we obtain 1 = 2𝐶2 , that is, 𝐶2 = 
1 

. Thus, the required 
2 

particular solution is 𝑦 = 
1 

𝑒−𝑥𝑠𝑖𝑛2𝑥. ■ 
2 

III. The roots of the characteristic equation are real and equal. 

In this case 𝑘1 = 𝑘2. One particular solution 𝑦1 = 𝑒𝑘1х is obtained based on 

previous reasoning. We need to find a second particular solution that is linearly 

independent of the first. 

We will look for the second particular solution in the form 

 

𝑦2 = 𝑢(𝑥)𝑒𝑘1𝑥 

 
where u(x) is an unknown function to be determined. 

Differentiating, we find 

 

𝑦′ = 𝑢′𝑒𝑘1𝑥 + 𝑘1𝑢𝑒𝑘1𝑥 = 𝑒𝑘1𝑥(𝑢′ + 𝑘1𝑢) 

 
𝑦′′ = 𝑢′′𝑒𝑘1𝑥 + 2𝑘1𝑢′𝑒𝑘1𝑥 + 𝑘2𝑢𝑒𝑘1𝑥 = 𝑒𝑘1𝑥(𝑢′′ + 2𝑘1𝑢′ + 𝑘2𝑢) 

2 1 1 

 
Substituting expressions for derivatives into equation (1), we obtain 

 

𝑒𝑘1𝑥[𝑢′′ + (2𝑘1 + 𝑝)𝑢′ + (𝑘2 + 𝑝𝑘1 + 𝑞)𝑢 ] = 0 

 
Since k1 is a multiple root of the characteristic equation, then 
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1 𝑘2 + 𝑝𝑘1 + 𝑞 = 0 
 

In addition, 𝑘1 = 𝑘2 = − 
𝑝
 

2 
or

 2𝑘
1 

= −𝑝 , 2𝑘2 + 𝑝 = 0, 

 

There fore, in order to find u(x), we need to solve the equation 

𝑢′′𝑒𝑘1𝑥 = 0 or 𝑢′′ = 0. Integrating, we get 𝑢 = 𝐴𝑥 + 𝐵. 

In particular, we can put 𝐴 = 1, 𝐵 = 0; then 𝑢 = 𝑥. Thus, as a second 

particular solution we can take 

 

𝑦2 = х𝑒𝑘1х
 

 
This solution is linearly independent of the first one, since 

𝑦2 
= х ≠ 𝑐𝑜𝑛𝑠𝑡 

𝑦1 
Therefore, the general integral will be the function 

 

𝑦 = 𝐶1𝑒𝑘1х + 𝐶2х𝑒𝑘1х = 𝑒𝑘1х(𝐶1 + 𝐶2𝑥) . ■ 
 

Example 3. Given equation  

𝑦′′ − 4𝑦′ + 4𝑦 = 0 

 
We write the characteristic equation 𝑘2 − 4𝑘 + 4 = 0 . Find its roots: 

𝑘1 = 𝑘2 = 2 . We will use the general integral 

 

𝑦 = 𝐶1𝑒2х + 𝐶2х𝑒2х. ■ 

 

 

Try to decide for yourself [3] 

 

1. Show that  𝑦 = 𝐶1𝑒3𝑥 + 𝐶2𝑒−3𝑥  is a general solution to the equation 

𝑦′′ − 9𝑦 = 0. 

2. Given the equation 𝑦′′′ − 𝑦′ = 0. Do the functions 𝑒𝑥, 𝑒−𝑥, 𝑐ℎ𝑥, which are, as 

can be easily verified, solutions to this equation, constitute a fundamental system 

of solutions? 

3. Theequation 𝑦′′ − 𝑦 = 0 is satisfied by two partial solutions 

𝑦1 = 𝑠ℎ𝑥 , 𝑦2 = 𝑐ℎ𝑥 . Do they constitute a fundamental system? 
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Answers. 

1) 𝑦 = 𝐶1𝑒3𝑥 + 𝐶2𝑒−3𝑥 − 𝑐𝑜𝑚𝑚𝑜𝑛 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

 

2) 𝑐ℎ𝑥 = 
𝑒𝑥+𝑒−𝑥 

, these three functions are linearly dependent. 
2 

3) Yes 

 

II- Chapter. Differential equations of higher order 

 

1 - §.Linear homogeneous equations of the nth order 

with constant coefficients (Vandermonde method) 

 

Consider a linear homogeneous equation of the nth order 

𝑦(𝑛) + 𝑎1𝑦(𝑛−1) + ⋯ + 𝑎𝑛𝑦 = 0 (1) 

or in short, 𝐿(𝑦) = 0. [9]. 

Where 𝐿(𝑦) = 𝑦(𝑛)+𝑎1𝑦(𝑛−1) + ⋯ + 𝑎𝑛𝑦 - is a linear homogeneous equation with 

real coefficients, a 𝑎1, 𝑎2, … 𝑎𝑛 −an are constants.We will look for solutions to this 

equation in the form  𝑦 = 𝑒𝑘𝑥, 𝑤ℎ𝑒𝑟𝑒 k - a certain number. 

Because 

𝑦′ = 𝑘𝑒𝑘𝑥, 𝑦′′ = 𝑘2𝑒𝑘𝑥, … , 𝑦(𝑛) = 𝑘(𝑛)𝑒𝑘𝑥, that 

 

𝐿(𝑒𝑘𝑥) = 𝑒𝑘𝑥[𝑘𝑛 + 𝑎1𝑘𝑛−1 + ⋯ + 𝑎𝑛] 

 
Polynomial 𝐹(𝑘) = 𝑘𝑛 + 𝑎1𝑘𝑛−1 + ⋯ + 𝑎𝑛 

 
is called the characteristic polynomial of the differential equation (1). 

In order for a function to be a solution to equation (1), it is necessary and 

sufficient that 𝑦 = 𝑒𝑘𝑥 
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𝐿(𝑒𝑘𝑥) = 0,  𝑡ℎ𝑎𝑡 𝑖𝑠 𝑒𝑘𝑥𝐹(𝑘) = 0. 

 
The multiplier is nonzero, the number k must satisfy the equation 𝑒𝑘𝑥 

𝐹(𝑘) = 0 (2) 

 

The equation 𝐹(𝑘) = 0 is called the characteristic equation corresponding 

to this differential equation (1). The function 𝑦 = 𝑒𝑘𝑥 was a solution to the 

differential equation (1), it is necessary and sufficient that the numberkbe the root 

of the corresponding characteristic equation (2). 

Characteristic equation (2) 

 

𝑘𝑛 + 𝑎1𝑘𝑛−1 + ⋯ + 𝑎𝑛 = 0 

 
is an algebraic equation of nth degree with respect to k, according to the basic 

theorem of algebra, it has n roots: 𝑘1, 𝑘2, … , 𝑘𝑛. Each of these roots corresponds 

to a solution to differential equation (1). 

1. All roots of characteristic equation (2) are real and different. 

The functions 𝑦1 = 𝑒𝑘1𝑥, 𝑦2 = 𝑒𝑘2𝑥, … , 𝑦𝑛 = 𝑒𝑘𝑛𝑥 are the proven solutions to 

the differential equation (1).To prove this, let’s compile the Wronski determinant: 

 

 

𝑊(𝑥) = | 

𝑒𝑘1𝑥 𝑒𝑘2𝑥 … 𝑒𝑘𝑛𝑥 

𝑘1𝑒𝑘1𝑥 𝑘2𝑒𝑘2𝑥 … . 𝑘𝑛𝑒𝑘𝑛𝑥 

… … … … . . … … . 

 

 

| = 𝑒(𝑘1+𝑘2+⋯+𝑘𝑛) ∙ 𝑉 

𝑘𝑛−1𝑒𝑘1𝑥 𝑘𝑛−1𝑒𝑘2𝑥 … . 𝑘𝑛−1𝑒𝑘𝑛𝑥 
1 2 𝑛 

 

where  

 

𝑉 = | 

 
1 1 … 1 
𝑘1 𝑘2 … 𝑘𝑛 

|
 

… … . … . 
𝑘𝑛−1 𝑘𝑛−1 … . 𝑘𝑛−1 

1 2 𝑛 

- determinant known as the Vandermonde determinant. 

It is equal to the product of all possible differences of the first powers of its 

elements. 

𝑉 = (𝑘2 − 𝑘1)(𝑘3 − 𝑘1) ∙∙∙∙ (𝑘𝑛 − 𝑘1)(𝑘3 − 𝑘2) ∙∙∙ (𝑘𝑛 − 𝑘2) ∙∙∙ (𝑘𝑛 − 𝑘𝑛−1). 
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Since the roots 𝑘1, 𝑘2, … , 𝑘𝑛 are different, the Vandermonde determinant, and 

therefore the Wronski determinant, are different from zero.In the case of different 

real roots of the characteristic equation (2) solutions 𝑘1, 𝑘2, … , 𝑘𝑛 

𝑦1 = 𝑒𝑘1𝑥, 𝑦2 = 𝑒𝑘2𝑥, … , 𝑦𝑛 = 𝑒𝑘𝑛𝑥 

 
constitute a fundamental system, which means that the general solution to equation 

(2) can be written as: 

 

𝑦 = 𝐶1𝑒𝑘1𝑥 + 𝐶2𝑒𝑘2𝑥 + ⋯ + 𝐶𝑛𝑒𝑘𝑛𝑥 

 
where 𝐶1, 𝐶2, … , 𝐶𝑛 - are arbitrary constants. 

Example 1. Given the equation у′′ − 3у′ + 2𝑦 = 0. The characteristic equation 

𝑘2 − 3𝑘 + 2 = 0 has the form, its roots 𝑘1 = 1, 𝑘2 = 2 are real and different, 

corresponding to particular solutions of the equation 𝑦1 = 𝑒𝑥, 𝑦2 = 𝑒2𝑥. 

Common decision: 

𝑦 = 𝐶1𝑒𝑥 + 𝐶2𝑒2𝑥. ■ 

where 𝐶1, 𝐶2 − are arbitrary constants. 

 

Example 2. Given an equation у′′′ − 7у′′ + 6у′ = 0 , we compose a 

characteristic equation: 

 

𝑘3 − 7𝑘2 + 6𝑘 = 0,  𝑘(𝑘2 − 7𝑘 + 6) = 0 , 𝑘1 = 0, 𝑘2 = 1, 𝑘3 = 6. 

 

The roots are real and different. The corresponding solutions are: 

 

𝑦1 = 1, 𝑦2 = 𝑒2𝑥, 𝑦3 = 𝑒6𝑥 

 
General solution of the equation: 

 

𝑦 = 𝐶1 + 𝐶2𝑒𝑥 + 𝐶3𝑒6𝑥. ■ 

 

where С1С2, С3 −are arbitrary constants. 

 

2. All roots of the characteristic equation are real, but among them there are 

multiple roots. 

In this case, among the 𝑘1, 𝑘2, … , 𝑘𝑛 numbers, there will be less than n 

different roots, and accordingly  𝑒𝑘1𝑥, 𝑒𝑘2𝑥, … , 𝑒𝑘𝑛𝑥, among the solutions, there 
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𝑚 

𝑚 

will also be less than n different solutions. This means that the system of these 

decisions will no longer be fundamental. 

To obtain the missing solutions, you can use the operator properties: 

 

𝐿(𝑦) = 𝑦(𝑛) + 𝑎1𝑦(𝑛−1) + ⋯ + 𝑎𝑛𝑦 

 
with constant coefficients. 

Equality 𝐿(𝑒𝑘𝑥) = 𝑒𝑘𝑥𝐹(𝑘) holds for all values of the number k. Let's 

differentiatem it differentlyk : 

 

 

 

Wherein 
𝜕𝑚𝐿(𝑒𝑘𝑥) 

𝜕𝑚𝐿(𝑒𝑘𝑥) 

𝜕𝑘𝑚 
=

 

𝜕 

𝜕𝑚[𝑒𝑘𝑥𝐹(𝑘)] 
 

 

𝜕𝑘𝑚 

𝜕𝑘𝑚 
= 

𝜕𝑘𝑚 
[(𝑒𝑘𝑥)𝑛 + 𝑎1(𝑒𝑘𝑥)(𝑛−1) + ⋯ + 𝑎𝑛𝑒𝑘𝑥] 

Taking into account the properties of derivatives, as well as the theorem of 

independence of the mixed derivative from the sequence of differentiations, we 

obtain: 

 

𝜕𝑚𝐿(𝑒𝑘𝑥) 𝜕𝑚𝑒𝑘𝑥 (𝑛) 
𝜕𝑚𝑒𝑘𝑥 (𝑛−1) 

𝜕𝑚𝑒𝑘𝑥 𝜕𝑚𝑒𝑘𝑥 

𝜕𝑘𝑚 
= (

 𝜕𝑘𝑚 
)

 
+ 𝑎1 ( 

𝜕𝑘𝑚 
)

 
+ ⋯ + 𝑎𝑛 

𝜕𝑘𝑚 = 𝐿 ( 
𝜕𝑘𝑚 

) =
 

 
= 𝐿(𝑥𝑚𝑒𝑘𝑥) 

On the other hand, using Leibniz's rule to calculate the derivative of order 

m of the product of two functions, we find: 
 

𝜕𝑚[𝑒𝑘𝑥𝐹(𝑘)] 𝜕𝑚𝑒𝑘𝑥 𝜕𝑚−1𝑒𝑘𝑥 𝜕𝑚−2𝑒𝑘𝑥 
(  )

 
= 𝐹(𝑘) + 𝑚 𝐹′(𝑘) + 𝐶2  𝐹′′ + ⋯ + 𝑒𝑘𝑥𝐹 𝑚 (𝑘) = 

𝜕𝑘𝑚 
 

𝜕𝑘𝑚 𝜕𝑘𝑚−1 𝑚  𝜕𝑘𝑚−2 

= 𝑒𝑘𝑥[𝑥𝑚𝐹(𝑘) + 𝑚𝑥𝑚−1𝐹′(𝑘) + 𝐶2 𝑥𝑚−2𝐹′′(𝑘) + ⋯ + 𝐹(𝑚)(𝑘)] 

 
Equating the results obtained, we arrive at the formula 

𝐿(𝑥𝑚𝑒𝑘𝑥) = 𝑒𝑘𝑥[𝑥𝑚𝐹(𝑘) + 𝑚𝑥𝑚−1𝐹′(𝑘) + 𝐶2 𝑥𝑚−2𝐹′′(𝑘) + ⋯ + 𝐹(𝑚)(𝑘)]  (3) 

valid for any natural number m and any number k. 

Let the 𝑘1 − root of equation (2) be multiplicity y𝑚1. This means that the 

characteristic polynomial F(k) can be written in the form: 
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𝐹(𝑘) = (𝑘 − 𝑘1)𝑚1 Ф(𝑘), where Ф(𝑘1) ≠ 0 
Since every multiple root of a polynomial is the root of a multiplicity of one lesser 

for its derivative, we conclude that 

 

𝐹(𝑘1) = 𝐹′(𝑘1) = ⋯ = 𝐹(𝑚1−1)(𝑘1) = 0, 𝑎 𝐹(𝑚1)(𝑘1) ≠ 0 

 
Substituting into formula (3) instead of k the number 𝑘1, instead of m 

successively the numbers 0, 1, 2, ...,𝑚1 − 1, we obtain that 𝐿(𝑥𝑚𝑒𝑘1𝑥) = 0. 
This means that the functions 

𝑒𝑘1𝑥, 𝑥𝑒𝑘1𝑥, 𝑥2𝑒𝑘1𝑥, … , 𝑥𝑚1−1𝑒𝑘1𝑥 

 

are solutions to this differential equation. The root 𝑘1 of the multiplicity 𝑚1of the 

characteristic equation (2) is put into 𝑚1 correspondence with exactly different 

solutions of the differential equation. 

 

Example 3.Given the equation  𝑦′′ − 4𝑦′ + 4𝑦 = 0. Its characteristic equation 

𝑘2 − 4𝑘 + 4 = 0 

has multiple roots 𝑘1 = 𝑘2 = 2 . The corresponding partial solutions of the 

equation have the form: 

 

Common decision: 

𝑦1 = 𝑒2𝑥, 𝑦2 = 𝑥𝑒2𝑥 

 
𝑦 = 𝐶1𝑒2𝑥 + 𝐶2𝑥𝑒2𝑥. 

 
where 𝐶1 and 𝐶2 − are arbitrary constants. 

Let's find a particular solution to this equation using the initial data 0, −1, 1. 
Because 

𝑦 = 𝐶1𝑒2𝑥 + 𝐶2𝑥𝑒2𝑥, 𝑤ℎ𝑒𝑟𝑒 𝑦′ = 2𝐶1𝑒2𝑥 + 𝐶2𝑒2𝑥(1 + 2𝑥). 

 
at 𝑥 = 0 we have 

− 1 = 𝐶1, 1 = 2𝐶1 + 𝐶2, from where 𝐶1 = −1, 𝐶2 = 3 

 
The required particular solution has the form: 

 

𝑦 = −𝑒2𝑥 + 3𝑥𝑒2𝑥. 

 

Example 4. An equation 𝑦𝑉 − 9𝑦′′′ = 0 is given. The characteristic equation has 

the form: 
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his roots 

𝑘5 − 9𝑘3 = 0 

 
𝑘3(𝑘2 − 9) = 0, 𝑘1 = 𝑘2 = 𝑘3 = 0, 𝑘2 = 9 ,  𝑘4,5 = ±3. 

 
The root 𝑘1 = 𝑘2 = 𝑘3 = 0 − is threefold, the roots 𝑘4 = 3, 𝑘5 = −3 are simple. 

 

3. Among the roots of the characteristic equation (2) there are imaginary roots. 

If each value of the real variable x is assigned a complex number, the real 

numbers  𝑦 = 𝑢 + 𝑖𝑣,  that 𝑢 𝑎𝑛𝑑 𝑣 are given by the complex function of the 

real arguments x: 

𝑦 = 𝑓(𝑥) 𝑜𝑟 𝑦 = 𝑢(𝑥) + 𝑖𝑣(𝑥) 

 
In this case, the functions 𝑢 (𝑥) and 𝑣 (𝑥) are called, respectively, the real 

part of the function 𝑦 = 𝑓 (𝑥). 
For complex functions of a real variable, one can introduce the concept of 

limit, continuity, and derivative in a similar way to how it was done in the actual 

case. From the definition of a derivative, in particular, it follows that 

 

𝑦′ = 𝑢′(𝑥) + 𝑖𝑣′(𝑥), … , 𝑦(𝑛) = 𝑢(𝑛)(𝑥) + 𝑖𝑣(𝑛)(𝑥) 

 
Consider linear homogeneous equation (1) with real coefficients: 

𝐿(𝑦) = 𝑦(𝑛) + 𝑎1𝑦(𝑛−1) + ⋯ + 𝑎𝑛𝑦 

 
A complex function of a real variable is called a solution to this equation if 

𝑦 = 𝑢(𝑥) + 𝑖𝑣(𝑥) 
 

𝐿(𝑦) ≡ 0, 𝑡ℎ𝑎𝑡 𝑖𝑠 𝐿(𝑢(𝑥) + 𝑖𝑣(𝑥)) ≡ 0 
 

Substituting 𝑦 = 𝑢(𝑥) + 𝑖𝑣(𝑥) equation (1), we get: 

 

(𝑢 + 𝑖𝑣)(𝑛) + 𝑎1(𝑢 + 𝑖𝑣)(𝑛−1) + ⋯ + 𝑎𝑛(𝑢 + 𝑖𝑣) = 

 
= [𝑢(𝑛) + 𝑎1𝑢(𝑛−1) + ⋯ + 𝑎𝑛𝑢] + 𝑖[𝑣(𝑛) + 𝑎1𝑣(𝑛−1) + ⋯ + 𝑎𝑛𝑣] = 

 
= 𝐿(𝑢) + 𝑖𝐿(𝑣) ≡ 0 

 
Since a complex number is equal to zero only when its real and imaginary 

parts are equal to zero, we conclude that 
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𝑒 ) = (𝛼 + 𝑖𝛽)𝑒 , 

𝑒 ) = (𝛼 + 𝑖𝛽) 𝑒 , 

𝑒 ) = (𝛼 + 𝑖𝛽) 𝑒 . 

𝐿(𝑢(𝑥)) ≡ 0 𝑎𝑛𝑑  𝐿(𝑣(𝑥)) ≡ 0. 

If a function 𝑦 = 𝑢(𝑥) + 𝑖𝑣(𝑥) is a solution to equation (1), then its real 

imaginary parts are also solutions to equation (1). For any real numbers α and β, 

we define the complex exponential function of the real argument by the equality: 

 

𝑒(𝛼+𝑖𝛽)𝑥 = 𝑒𝛼𝑥(𝑐𝑜𝑠𝛽𝑥 + 𝑖𝑠𝑖𝑛𝛽𝑥) 

 
If it 𝛼 = 0, follows from this that for any real number β the equality holds, 

𝑒𝑖𝛽𝑥 = 𝑐𝑜𝑠𝛽𝑥 + 𝑖𝑠𝑖𝑛𝛽𝑥 

 
Substituting the number −𝛽 instead of the number 𝛽, we get the equality 

 

𝑒−𝑖𝛽𝑥 = 𝑐𝑜𝑠𝛽𝑥 − 𝑖𝑠𝑖𝑛𝛽𝑥 
From these equalities we obtain as a consequence that 

 

𝑐𝑜𝑠𝛽𝑥 = 
𝑒𝑖𝛽𝑥+𝑒−𝑖𝛽𝑥 

, 𝑠𝑖𝑛𝛽𝑥 = 
𝑒𝑖𝛽𝑥−𝑒−𝑖𝛽𝑥

.
 

2 2 

 
A function 𝑒(𝛼+𝑖𝛽)𝑥 for any value has derivatives of all orders, and: 

( (𝛼+𝑖𝛽)𝑥 ′ (𝛼+𝑖𝛽)𝑥 

( (𝛼+𝑖𝛽)𝑥 ′′ 2  (𝛼+𝑖𝛽)𝑥 

…………………………… 

( (𝛼+𝑖𝛽)𝑥 (𝑛) 𝑛  (𝛼+𝑖𝛽)𝑥 

 
Let be 𝑘1 = 𝛼1 + 𝑖𝛽1 - a simple root of the characteristic equation (2). This 

equation has real coefficients, and among its roots there is a root that is the 

complex conjugate of root 𝑘1. Denoted by 𝑘2: 

𝑘2 = 𝛼1 − 𝑖𝛽1 

 
Roots 𝑘1 and 𝑘2 correspond to complex solutions 

 

𝑦1 = 𝑒(𝛼1+𝑖𝛽1)𝑥 𝑎𝑛𝑑 𝑦2 = 𝑒(𝛼1−𝑖𝛽1)𝑥 

 

differential equation (1). 

It has been shown that the real imaginary parts of these solutions, in turn, are 

solutions to equation (1). Because 
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𝑦1 = 𝑒𝛼1𝑥𝑐𝑜𝑠𝛽1𝑥 + 𝑖𝑒𝛼1𝑥𝑠𝑖𝑛𝛽1𝑥, 𝑦2 = 𝑒𝛼1𝑥𝑐𝑜𝑠𝛽1𝑥 − 𝑖𝑒𝛼1𝑥𝑠𝑖𝑛𝛽1𝑥 

 
then this means that the functions 

𝑒𝛼1𝑥𝑐𝑜𝑠𝛽1𝑥, 𝑒𝛼1𝑥𝑠𝑖𝑛𝛽1𝑥 𝑎𝑛𝑑 − 𝑒𝛼1𝑥𝑠𝑖𝑛𝛽1𝑥 
will be real solutions to equation (1). Discarding the last of them, we obtain two 

valid solutions to equation (1): 

𝑦̃1 = 𝑒𝛼1𝑥𝑐𝑜𝑠𝛽1𝑥 𝑎𝑛𝑑 �̃�2 = 𝑒𝛼1𝑥𝑠𝑖𝑛𝛽1𝑥 

 
corresponding to two simple complexes with conjugate roots  𝑘1,2 = 𝛼1 ± 𝑖𝛽1 

of the characteristic equation. If a number 𝑘1 = 𝛼1 + 𝑖𝛽1 is a root of the 

characteristic equation (2) of multiplicity 𝑚1, then the complex conjugate number 

𝑘2 = 𝛼1 − 𝑖𝛽1  is also a root of the equation (2) of multiplicity 𝑚1. These roots 

2𝑚1 correspond to complex solutions of the differential equation (1): 

𝑒(𝛼1+𝑖𝛽1)𝑥,  𝑥𝑒(𝛼1+𝑖𝛽1)𝑥, … , 𝑥𝑚1−1𝑒(𝛼1+𝑖𝛽1)𝑥, 

 

𝑒(𝛼1−𝑖𝛽1)𝑥, 𝑥𝑒(𝛼1−𝑖𝛽1)𝑥, … , 𝑥𝑚1−1𝑒(𝛼1−𝑖𝛽1)𝑥 

 

Based on complex solutions, separating their real imaginary parts, we can 

create a system of 2𝑚1 real solutions to the same equation (1): 

𝑒𝛼1𝑥𝑐𝑜𝑠𝛽1𝑥, 𝑥𝑒𝛼1𝑥𝑐𝑜𝑠𝛽1𝑥, … , 𝑥𝑚1−1 𝑒𝛼1𝑥𝑐𝑜𝑠𝛽1𝑥 
 

𝑒𝛼1𝑥𝑠𝑖𝑛𝛽1𝑥, 𝑥𝑒𝛼1𝑥𝑠𝑖𝑛𝛽1𝑥, … , 𝑥𝑚1−1 𝑒𝛼1𝑥𝑠𝑖𝑛𝛽1𝑥 

 
General rule for solving a linear homogeneous differential equation 

with constant coefficients. 

 

1. We compose a characteristic equation and find all its roots. 

2. We find particular solutions to this differential equation, and: 

a) each simple real root k of the characteristic equation is associated with a 

solution 𝑒𝑘𝑥 , 
b) each m -  multiple  real  rootk  of  the  characteristic  equation is  put  in 

correspondence with m solutions: 

 

𝑒𝑘𝑥, 𝑥𝑒𝑘𝑥, 𝑥2𝑒𝑘𝑥, … , 𝑥𝑚−1𝑒𝑘𝑥 

 

c) each pair of simple complex conjugate roots 𝛼 ± 𝑖𝛽 of the characteristic 

equation is associated with two solutions: 
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𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥  𝑎𝑛𝑑 𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥 

 
d) each pair of m – multiple complex conjugate roots of the characteristic equation 

is put in correspondence with 2m solutions: 

 

𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥, 𝑥𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 , … , 𝑥𝑚−1𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 

 
𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥, 𝑥𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥 , … , 𝑥𝑚−1𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥 

The set of solutions obtained in this way forms a fundamental system of solutions 

to the equation in the section −∞ < х < +∞ . 

 

 

3. We compose a linear combination of the solutions found. 

This linear combination of solutions with arbitrary coefficients will give a 

general solution to the equation in the 𝑋𝑂𝑌 plane. 

 

Example 5. Given the equation 𝑦′′′ − 𝑦 = 0. Characteristic equation 

𝑘3 − 1 = 0 has roots 𝑘1 = 1, 𝑘 
 
2,3 = − 

1
 
2 

 

 

± 𝑖 √
3

 
2 

These roots correspond to the solutions 
 

 
  

𝑦1 = 𝑒 𝑥, 𝑦2 = 𝑒 
𝑥 

2 𝑐𝑜𝑠 
√3 

2 
𝑥, 𝑦3 = 𝑒 

𝑥 √3 
2𝑠𝑖𝑛 𝑥 

2 
General solution of the equation: 

 

 
  

𝑦 = 𝐶1𝑒𝑥 + 𝑒 
𝑥 

2 [𝐶2𝑐𝑜𝑠 
√3 

2 
𝑥 + 𝐶3𝑠𝑖𝑛 

√3 
𝑥] 

2 

 
where 𝐶1, 𝐶2, 𝐶3 − are arbitrary constants. 

 

Example 6. If the equation 𝐿(𝑦) = 0 with constant coefficients has roots 

of the characteristic equation of the number 

 

𝑘1,2,3,4 = −1, 𝑘5,6 = 2 + 3𝑖, 𝑘7,8 = 2 − 3𝑖, 

 
then the general solution of this equation has the form: 

 

𝑦 = 𝐶1𝑒−𝑥 + 𝐶2𝑥𝑒−𝑥 + 𝐶3𝑥2𝑒−𝑥 + 𝐶4𝑥3𝑒−𝑥 + 𝐶5𝑒2𝑥𝑐𝑜𝑠3𝑥 + 

− − 

− 
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+𝐶6𝑥𝑒2𝑥𝑐𝑜𝑠3𝑥 + 𝐶7𝑒2𝑥𝑠𝑖𝑛3𝑥 + 𝐶8𝑥𝑒2𝑥𝑠𝑖𝑛3𝑥 

where 𝐶1, 𝐶2, … , 𝐶8 −are arbitrary constants. 

 

(Find using the usual method) 

Definition1.  If for allx of the interval [𝑎, 𝑏] the equality 

 

𝜑𝑛(𝑥) = 𝐴1𝜑1(𝑥) + 𝐴2𝜑2(𝑥) + ⋯ + 𝐴𝑛−1𝜑𝑛−1(x) 

where 𝐴1, 𝐴2, … , 𝐴𝑛−1 −are constant numbers that are not all equal to zero, so that 

𝜑𝑛(𝑥) is expressed linearly through the functions  𝜑1(𝑥), 𝜑2(𝑥), … , 𝜑𝑛−1(𝑥). 

Definition 2. n  functions 𝜑1(𝑥), 𝜑2(𝑥), … , 𝜑𝑛−1(𝑥), 𝜑𝑛(𝑥) are called 

linearly independent if none of these functions can be expressed linearly through 

the others. 

Note1.  From  the  definitions  it  follows  that  if  the  functions 

𝜑1(𝑥), 𝜑2(𝑥), … , 𝜑𝑛(𝑥)  are  linearly  dependent,  then  there  are 

constants 𝐶1, 𝐶2, … , 𝐶𝑛, not all equal to zero, such that for all the segment [𝑎, 𝑏] the 

identity will hold 

 

𝐶1𝜑1(𝑥) + 𝐶2𝜑2(𝑥) + ⋯ + 𝐶𝑛𝜑𝑛(𝑥) ≡ 0 

 
Example 1. The functions 𝑦1 = 𝑒𝑥, 𝑦2 = 𝑒2𝑥, 𝑦3 = 𝑒3𝑥  are linearly independent, 

since neither for 𝐶1 = 1, 𝐶2 = 0, 𝐶3 = − 
1

 
3 

the identity holds 

 

𝐶1𝑒𝑥 + 𝐶2𝑒2𝑥 + 𝐶3𝑒3𝑥 ≡ 0 

 
Example 2. The functions 𝑦1 = 1, 𝑦2 = 𝑥, 𝑦3 = 𝑥2 are linearly independent, 

since no 𝐶1, 𝐶2, 𝐶3, are simultaneously equal to zero, the expression 

𝐶1 ∙ 1 + 𝐶2𝑥 + 𝐶3𝑥2 
will not be identically zero. 

Example 3. Functions 𝑦1 = 𝑒𝑘1𝑥, 𝑦2 = 𝑒𝑘2𝑥 , …, 𝑦𝑛 = 𝑒𝑘𝑛𝑥,… 

where 𝑘1, 𝑘2, … , 𝑘𝑛 − are distinct numbers, linearly independent. 

Let us now move on to solving equation (1). The following theorem holds for this 

equation. 

Theorem. If the functions 𝑦1, 𝑦2, … , 𝑦𝑛 are linearly independent solutions 

of equation (1), then its general solution is 

 

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 + ⋯ + 𝐶𝑛𝑦𝑛 (2) 
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where 𝐶1, … , 𝐶𝑛 − are arbitrary constants. 

If the coefficients of equation (1) are constant, then the general solution is 

found in the same way as in the case of a second-order equation. 

1) Making up a characteristic equation 

 

𝑘𝑛 + 𝑎1𝑘𝑛−1 + 𝑎2𝑘𝑛−2 + ⋯ + 𝑎𝑛= 0. 

 

2) Find the roots of the characteristic equation 𝑘1, 𝑘2, … , 𝑘𝑛. 

3) Based on the nature of the roots, we write out particular linearly independent 

solutions, guided by the fact that: 

a) each real single root k corresponds to a particular solution 𝑒𝑘𝑥; 

b) each pare complex conjugate single root 

𝑘(1) = 𝛼 + 𝑖𝛽 and 𝑘(2) = 𝛼 − 𝑖𝛽 correspond to two partial solutions 

𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 𝑎𝑛𝑑 𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥 ; 
c) each real root k of multiplicity corresponds to linearly independent partial 

solutions 𝑒𝑘𝑥, 𝑥𝑒𝑘𝑥, … , 𝑥𝑟−1𝑒𝑘𝑥; 
d) each pair of complex conjugate roots 

 

𝑘(1) = 𝛼 + 𝑖𝛽,  𝑘(2) =𝛼 − 𝑖𝛽 

 
multiplicities 𝜇 correspond to 2𝜇 particular solutions 

 

𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥, 𝑥𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥, … , 𝑥𝜇−1𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 

 
𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥, 𝑥𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥, … , х𝜇−1𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥 

4) Having found n linearly independent partial solutions to 𝑦1, 𝑦2, … , 𝑦𝑛 we 

construct a general solution to this linear equation 

 

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 + ⋯ + 𝐶𝑛𝑦𝑛 
where 𝐶1, … , 𝐶𝑛 - are arbitrary constants. 

Example 4. Find a general solution to the equation 

 

𝑦𝐼𝑉 − 𝑦 = 0 

 
Solution.Making up a characteristic equation 

 

𝑘4 − 1 = 0 

 
we find the roots of the characteristic equation: 
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𝑘1 = 1, 𝑘2 = −1, 𝑘3 = 𝑖, 𝑘4 = −𝑖 
write a general integral 

𝑦 = 𝐶1𝑒𝑥 + 𝐶2𝑒−𝑥 + 𝐶3𝑐𝑜𝑠𝑥 + 𝐶4𝑠𝑖𝑛𝑥 

 
Where 𝐶1, 𝐶2, 𝐶3, 𝐶4 − are arbitrary constants. 

 

 

Try to decide for yourself [3] 

 

1. Find the general solution to the equation у′′ − 7у′ + 6у = 0 
2. Find the general solution to equation 𝑦𝐼𝑉 − 13𝑦′′ + 36𝑦 = 0 

3. Find a general solution to the equation 𝑦′′′ − 2 𝑦′′ + 𝑦′ = 0 
4. Find a general solution to the equation 𝑦′′ − 4 𝑦′ + 13 𝑦 = 0 

 
Answers.1) 𝑦 = 𝐶1𝑒6𝑥 + 𝐶2𝑒𝑥 

 
2) 𝑦 = 𝐶1𝑒3𝑥 + 𝐶2𝑒−3𝑥 + 𝐶3𝑒2𝑥 + 𝐶4𝑒−2𝑥 

 
3) 𝑦 = 𝐶1 + 𝐶2𝑒𝑥 + 𝐶3𝑥𝑒𝑥 

 
4) 𝑦 = 𝑒2𝑥(𝐶1𝑐𝑜𝑠3𝑥 + 𝐶2𝑠𝑖𝑛3𝑥) 
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2 - §. Higher order differential equations 

(general concepts) 

 

Differential equation of nth order called ratio 

 

𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛)) = 0 (1) 

 

Connecting the independent variable, the desired function and its derivatives 

up to the n -th order inclusive. Any differential equation of order higher than first 

is called a higher order equation. [9]. 

For example, equations 

 

𝑦′′′ − 1 = 0, 𝑥𝑦′ − 2𝑦′′ + 𝑦′′3 = 0, 𝑦𝑉
3 

− 𝑒4𝑦
′′′ 

+ 1 = 0 

 
– equations of higher (third, second and fifth, respectively) orders. 

In some cases, equation (1) can be resolved with respect 𝑦(𝑛),to i.e. in the 

form: 

𝑦(𝑛) = 𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛−1)) = 0 (2) 

 

Such an equation is called an nth-order equation resolved with respect to the 

highest derivative. 

Second order differential equation 

 

𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′ ) = 0 (3) 

 

expresses the relationship between the coordinates of the point of the integral 

curve, the angular coefficient of its tangent and the curvature at this point. Integral 

curves of equation (3) are curves that at each point have the relationship prescribed 

by the equation between the angular coefficient of the tangent to the curve and the 

curvature. 

Differential equations are widely used in mechanics, regardless of the 

specific physical or geometric meaning of the argument x of the desired function y, 
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0 

0 

0 

numbers 𝑥0, 𝑦0, 𝑦′ , representing a certain value of the argument (𝑥 = 𝑥0) and the 

value of the desired function (𝑦 = 𝑦0) and its derivative (𝑦′ = 𝑦′ ) in this case, 

the values of the argument are usually called initial conditions or initial data for the 

equation and second order: 

 

𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′ ) = 0 

 
The solution 𝑦 = 𝜑(𝑥) of this equation satisfies the initial conditions 

𝑥0, 𝑦0, 𝑦′ , if 𝜑(𝑥0) = 𝑦0, 𝜑′(𝑥0) = у′ . 
0 0 

Geometrically, this integral curve of the equation passes through the point 

(𝑥0, 𝑦0) of the 𝑋𝑂𝑌 plane and has a tangent at this point with an angle coefficient 

у′ . 
Higher order equations that can be solved with respect to the higher 

derivative. For these equations there is a theorem on the existence and uniqueness 

of a solution, similar to the corresponding theorem on the solution of a first-order 

equation. 

Cauchy's  theorem. If a function of  (𝑛 + 1) – variables 

𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛−1))outside some region of 𝐷(𝑛 + 1) −dimensional space is 

continuous and has continuous partial derivatives with respect to 𝑦, 𝑦′, 𝑦′′, …, 
𝑦(𝑛−1), then whatever the point is (𝑥 , 𝑦 , 𝑦′ , … , 𝑦(𝑛−1)) of this region, there is a 

0 0 0 0 

unique solution to the equation 𝑦 = 𝜑(𝑥) 

 
𝑦(𝑛) = 𝑓(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛−1)) 

 
defined within  a  certain  interval  containing  point 𝑥0 ,  satisfying  the  initial 
conditions 𝑥 , 𝑦 , 𝑦′ , … , 𝑦(𝑛−1). 

0 0 0 0 

For an n-th-order equation (1) and (2), the initial conditions are a system of 
(𝑛 + 1) numbers 𝑥 , 𝑦 , 𝑦′ , … , 𝑦(𝑛−1) , representing the initial value of the 

0 0 0 0 

independent variable 𝑥 (𝑥 = 𝑥0) and the values of the sought function y and all 

derivatives up to (𝑛 − 1) th orderinclusive at 𝑥 = 𝑥0. 
 

у| = у , у′| = у′ , … , у(𝑛−1)| = 𝑦(𝑛−1) 
(2)

 
х=х0 0 х=х0 0 𝑥=𝑥0 

0 

 
These conditions are called initial conditions. 

If we consider the second-order equation 

 

𝑦′′ = 𝑓 (𝑥, 𝑦, 𝑦′ ) (3) 
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0 where 𝑥0, 𝑦0, 𝑦′ are given numbers. The geometric meaning of these conditions is 

as follows: a single curve passes through a given point of the plane (𝑥0, 𝑦0) with a 
given tangent of the tangent angle 𝑦′ . From this it follows that if 𝑦′ we set 

0 0 

different values for constant 𝑥0 and 𝑦0, then we will obtain an infinite number of 

integral curves with different slope angles passing through a given point. 

Let us now introduce the concept of a general solution to an n th order 

equation. 

Definition.General solution n th order differential equation is called a 

function 

𝑦 = 𝜑(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑛) (4) 

 

depending on n arbitrary constants 𝐶1, 𝐶2, … , 𝐶𝑛 such that: 

a) it satisfies the equation for any values of the constants 

𝐶1, 𝐶2, … , 𝐶𝑛; 

b) under given initial conditions 
у| = у , у′| = у′ , … , у(𝑛−1)| = 𝑦

(𝑛−1) 
х=х0 0 х=х0 0 𝑥=𝑥0 

0 

 
constants 𝐶1, 𝐶2, … , 𝐶𝑛 can be selected so that the function 

𝑦 = 𝜑(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑛 ) will satisfy these conditions (assuming that the initial 
values 𝑥 , 𝑦 , 𝑦′ , …,𝑦(𝑛−1) belong to the region where the conditions for the 

0 0 0 0 

existence of the solution are met). 

The equation 

Ф(𝑥, 𝑦, 𝐶2, … , 𝐶𝑛) = 0 , (5) 

 

the implicitly defining general solution is called the general integral of the 

differential equation. 

Any function resulting from the general solution for specific values of the 

constants 𝐶1, 𝐶2, … , 𝐶𝑛 is called a particular solution. The graph of a particular 

solution is called the integral curve of a given differential equation. 

Each system of values of these parameters corresponds to the equation 

Ф(𝑥, 𝑦, 𝐶10, 𝐶20, … , 𝐶𝑛0) = 0 , connecting the variables 𝑥 and 𝑦. This equation 

defines a certain curve on the 𝑋О𝑌 plane. The set of all such curves is called a 

family of curves depending on n parameters, given by equation (5), and equation 

(5) itself is called the equation of this families of curves. 

For example, the family of all non-vertical straight lines of the 𝑋𝑂𝑈 plane 

has an equation 𝑦 = 𝐶1𝑥 + 𝐶2, С1 𝑎𝑛𝑑 С2 - parameters. 

The family of all circles in the XOY plane has the equation 
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3 

0 

(𝑥 − 𝐶1)2 + (𝑦 − 𝐶2)2 = 𝐶2. 

 

This family depends on three parameters С1, С2 𝑎𝑛𝑑 С3 𝑒𝑡𝑐. 
Solving a differential equation of the nth order means: 

1) find its general solution or 

2) find that particular solution of the equation that satisfies the given initial 

conditions. 

Example 1. Find a partial solution of the equation 𝑦′′ = 𝑥𝑒−𝑥, satisfying the 

initial conditions 𝑦(0) = 1, 𝑦′(0) = 0. 
Solution. Let's find a general solution by sequentially integrating this equation: 

𝑦′ = ∫ хе−х𝑑𝑥 = −𝑥𝑒−𝑥 − 𝑒−𝑥 + 𝐶1 

 
𝑦 = ∫[−𝑥𝑒−𝑥 − 𝑒−𝑥 + 𝐶1]𝑑𝑥 = 𝑥𝑒−𝑥 + 2𝑒−𝑥 + 𝐶1𝑥 + 𝐶2 

or 

𝑦 = (𝑥 + 2) + 𝑥 + 𝑒−𝑥С1С2 

 
Let's use the initial conditions: 1 = 2 + 𝐶2; 𝐶2 = −1; 0 = − 1 + 𝐶1; 𝐶1 = 1. 

 
Consequently, the required particular solution has the form 

 

𝑦 = (𝑥 + 2) + 𝑥 – 1𝑒−𝑥 

 
The same solution can be found in the following way, using immediately 

given initial conditions: 

𝑦′ = 𝑦′(0) + ∫
х 

хе−х𝑑𝑥 = [−𝑥𝑒−𝑥 𝑒−𝑥]𝑥𝑒−𝑥 − 𝑒−𝑥 + 1 
0 0 

 
𝑥 

𝑦 = 𝑦(0) + ∫ [−𝑥𝑒−𝑥 − 𝑒−𝑥 + 1]𝑑𝑥 = 1 + [(𝑥 + 2)𝑒−𝑥 + 𝑥]𝑥 = 
0 

= (𝑥 + 2)𝑒−𝑥 + 𝑥 − 1 
 

 
Try to decide for yourself [3] 
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1 

1. 𝑦(𝑉) = 𝑐𝑜𝑠2𝑥; 𝑦(0) = 
1
 

32 
; 𝑦′(0) = 0;  𝑦′′(0) = 1 ; 𝑦 

8 
′′′(0) = 0 

2. 𝑦′′′ = 𝑥𝑠𝑖𝑛𝑥; 𝑦(0) = 0; 𝑦′(0) = 0; 𝑦′′(0) = 2. 

 
3. 𝑦′′′ 𝑠𝑖𝑛4 𝑥 = 𝑠𝑖𝑛 2𝑥 

 
4. 𝑦′′ = 2 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠2 𝑥 – 𝑠𝑖𝑛3 𝑥 

 
5. 𝑦′′′ = 𝑥𝑒−𝑥; 𝑦(0) = 0, 𝑦′(0) = 2; 𝑦′′(0) = 2. 

 

Answers. 

1) 𝑦 = 
1

 
48 

 
𝑥4 

 

+ 
1 

𝑥2 
8 

 

+ 
1 

𝑐𝑜𝑠2𝑥 
32 

 
2) 𝑦 = 𝑥𝑐𝑜𝑠𝑥 − 3𝑠𝑖𝑛𝑥 + 𝑥2 + 2𝑥 

 
3) 𝑦 = 𝑙𝑛𝑠𝑖𝑛𝑥 + 𝐶1𝑥2 + 𝐶2𝑥 + 𝐶3 

 

4) 𝑦 =  𝑠𝑖𝑛3 
3 

𝑥 + 𝐶1𝑥 + 𝐶2 

 

5) 𝑦 = −(𝑥 + 3)𝑒−𝑥 + 
3 

𝑥2 + 3 
2 
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3 - §. Higher order equations allowingdowngrading 

 

One of the main methods used when integrating higher-order differential 

equations is to reduce the order of the equation, that is, reduce the equation by 

replacing variables to another equation of lower order. [9] 

a) Equations of the form 𝒚(𝒏) = 𝒇(𝒙) , where 𝑓(𝑥) - is a function 

continuous on some interval 𝑎 < 𝑥 < 𝑏 of the 𝑂𝑋 axis, not only allow a 

reduction in order, but are also integrated in quadratures. For any solution 

𝑦 = 𝜑(𝑥) of the equation 

𝑦(𝑛) = 𝑓(𝑥) (1) 

lying in the strip {𝑎 < 𝑥 < 𝑏, −∞ < 𝑦 < +∞} , sequentially integrating, we 

obtain: 

𝑦(𝑛−1) = ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶1 

 

𝑦(𝑛−2) = ∫ (∫ 𝑓(𝑥)𝑑𝑥 + 𝐶1) 𝑑𝑥 + 𝐶2 = ∫ 𝑑𝑥 ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶1 𝑥 + 𝐶2, 

…………………………………….. 

𝑦 = ∫ 𝑑𝑥 ∫ 𝑑𝑥 … ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶 𝑥𝑛−1 + 𝐶 𝑥𝑛−2 + ⋯ + 𝐶 (2) 
1 (𝑛−1)! 2 (𝑛−2)! 𝑛 

 
where each integral denotes one of the antiderivatives for the integral function, and 

С1, С2, … , С𝑛 −some are constants. 

By direct substitution into equation (1), we make sure that function (2) satisfies 

equation (1) for any values of the С1, С2, … , С𝑛 constants. 

Example.Given the equation 𝑦′′′ = 𝑒2𝑥. It is required to find a particular solution 

that satisfies the initial conditions: 

 
х0 = 0, у0 = 1, у′ = −1, у′′ = 0. 

0 0 

Since the function 𝑓(𝑥) = 𝑒2𝑥 is continuous everywhere, the general 

solution of the equation in the 𝑋𝑂𝑌 plane is obtained by three times sequential 

integration of the relation 𝑦′′′ = 𝑒2𝑥. 
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7 
3 

𝑦′′ = 
1 

𝑒2𝑥 + 𝐶 
 

2 

𝑦′ = 
1 

𝑒2𝑥 + 𝐶 

1 
 

 
𝑥 + 𝐶 

 

4 1 2 

 

𝑦 = 
1 

 

 𝑒2𝑥 + 𝐶1 
8 

𝑥2 
 

 

2 
+ 𝐶2𝑥 + 𝐶3. 

 

General solution in the 𝑋𝑂𝑌 plane: 
1 

 

𝑥2 

𝑦 =  𝑒2𝑥 + 𝐶1 
8
 
2 

+ 𝐶2𝑥 + 𝐶3, 

where 𝐶1, 𝐶2, 𝐶3 −are arbitrary constants. 

Substituting the initial values int у, у′, у′′ the expressions, we obtain the 

following relations to determine the constants 𝐶1, 𝐶2, 𝐶3: 

 
1 1 1 

1 = 
8 

+ С3 , − 1 = 
4 

+ С2, 0 = 
2 

+ С1 

 

where is it from?  

С1 = − 

 
1
 
5 

2 
, С2 = − 

4
 

 
, С = . 

8 

 
The particular solution you are looking for: 

 

𝑦 = 
1 

𝑒
 

8 
2𝑥 − 

1 
𝑥2 

4 
− 

5 
𝑥 + 

4 

7. ■ 
8 

 
General form of a 2nd order differential equation: 

 

𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′) = 0 (1) 

 
Let us note 3 particular types of equation (1), when its solution is reduced to 

the sequential solution of two differential equations of the 1st order. 

1. The equation does not contain the desired function y,that is, it has the form 

 

𝐹(𝑥, 𝑦′, 𝑦′′) = 0  (2) 

 
In this case, we introduce a new unknown function z by putting 
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𝑦′ = 𝑧 
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Then 𝑦′′ = 𝑧′ and (2) takes the form 

 

𝐹(𝑥, 𝑧, 𝑧′) = 0 

 
first-order equation for z. Having solved it, we find 

 

 

that is 

then 

𝑧 = 𝜑(𝑥, 𝐶1) 

 
𝑦′ = 𝜑(𝑥, 𝐶1) 

 
𝑦 = ∫ 𝜑(𝑥, 𝐶1)𝑑𝑥 + 𝐶2. 

Example. 𝑦′′ − 
𝑦′ 

= 𝑥𝑒𝑥. Setting 𝑦′ = 𝑧, we obtain a linear differential equation 
𝑥 

of 1st order 

We'll find 

From here 

 

 

 

 

 

 
𝑦 = ∫(𝑒𝑥 + 𝐶 

𝑧′ − 
𝑧 

= 𝑥𝑒𝑥. 
𝑥 

𝑧 = (𝑒𝑥 + 𝐶1)𝑥 

 
)𝑥𝑑𝑥 = 𝑥𝑒𝑥 − 𝑒𝑥 + 𝐶 

 
 
 
 

 
𝑥2 

+ 𝐶 . 

1 1 2 2 

 
2. The equation does not contain the independent variable x, that is, it looks like 

 

𝐹(𝑦, 𝑦′, 𝑦′′) = 0 (3) 

 

In this case, accept the unknown function 𝑦′ = 𝑧 and accept the new 

independent variable y. Then 

 

𝑦′′ = 
𝑑𝑦′ 

= 
𝑑𝑦′ 

∙ 
𝑑𝑦 

= 
𝑑𝑧 

𝑧
 

𝑑𝑥 𝑑𝑦 𝑑𝑥 𝑑𝑦 

 
Equation (3) is transformed into an equation of 1st order 

𝑑𝑧 

 
Decide it 

𝐹 (𝑦, 𝑧, 𝑧 
 

 

𝑑
𝑦 

) = 0. 

 
that is 

𝑧 = 𝜑(𝑦, 𝐶1) 
 

𝑑𝑦 

𝑑𝑥 
= 𝜑(у, С1) 
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where 

 

 

and 

 

𝑑𝑦 
 

 

𝜑(𝑦, 𝐶1) 
 

𝑑𝑦 

 
= 𝑑𝑥 

∫ 
𝜑(𝑦, 𝐶1 ) 

= 𝑥 + 𝐶2 

 
This is the general integral of a differential equation. 

 

Example. 𝑦𝑦′′ − 2𝑦′2 = 0. Assuming we get 𝑦′ = 𝑧, 𝑦′′ = 𝑧 
𝑑𝑧

 
𝑑𝑦 

 

𝑦𝑧 
𝑑𝑦 

− 2𝑧2 = 0 
𝑑𝑥 

or 
𝑑𝑧 

𝑧 (𝑦 
 

 

𝑑
𝑦 

− 2𝑧) = 0 

 
This differential equation splits into two: 

𝑑𝑧 
𝑧 = 0, 𝑦 

 
 

𝑑
𝑦 

− 2𝑧 = 0 

 
The first of у′ = 0 them 𝑦 = 𝐶 gives. In the second, the variables are 

separated: 
𝑑𝑧 

= 
2𝑑𝑦

,
 

where 

𝑧 𝑦 

𝑙𝑛𝑧 = 2𝑙𝑛𝑦 + 𝑙𝑛𝐶1 

𝑧 = 𝐶1𝑦2. 

 

Remembering what we get 𝑧 = 
𝑑𝑦

 
𝑑𝑥 

 
 

And 

𝑑𝑦 

𝑦2 = 𝐶1𝑑𝑥 

 
1 

− 
𝑦 

= 𝐶1𝑥 + 𝐶2 

 
that is (replacing 𝐶1 and 𝐶2 with −𝐶1 and −𝐶2) 
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𝑥 

𝑦 = 
1

 
𝐶1𝑥+𝐶2 

(3) 

 

This is the general solution of the differential equation. The previously found 

solution 𝑦 = 𝐶 is contained in (3), obtained from (3) with 𝐶1 = 0. 

3. The equation has the form 

𝑦′′ = 𝑓(𝑦) (4) 

 

This is a special case of equation (2), and therefore it can be solved by 

replacing 

𝑦′′ = 𝑧 
𝑑𝑧

 
𝑑𝑦 

 
where 𝑧 = 𝑦′. This substitution transforms the differential equation (4) into the 

equation 

 

giving 

 

𝑧 
𝑑𝑧 

= 𝑓(𝑦) (5) 
𝑑𝑦 

 

 
From here 

𝑧2 

2 
= ∫ 𝑓(𝑦)𝑑𝑦 + 𝐶1 

 
 

𝑧 = ±√2 [𝐶1 + ∫ 𝑓(𝑦)𝑑𝑦] 
 

or 
𝑑𝑦 

 

√2[𝐶1+∫ 𝑓(𝑦)𝑑𝑦] 

 
= ±𝑑𝑥 (6) 

 

and another integration leads to the general integral of equation (4). 

Example. 𝑦′′ = 
3 

𝑦2, 𝑦| 
2 

𝑥=3 = 1, 𝑦′| 𝑥=3 = 1.  Making the replacement, we find 

𝑦′′ = 𝑧 
𝑑𝑧

 
𝑑𝑦  

2𝑧𝑑𝑧 = 3𝑦2𝑑𝑦, 

where  

𝑧2 = 𝑦3 + 𝐶1 

 
Assuming here х = 3 and taking into account that in this case it will be 𝑦′ = 𝑧 = 1, 
that before the radical we must choose the sign + and that 𝐶1 = 0. 

 

𝑑𝑦 = √у3. 
𝑑𝑥 

Means, 
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and 

−
3 

𝑦 2𝑑𝑦 = 𝑑𝑥 
 

1 − 

−2𝑦 2 = 𝑥 + 𝐶2. 

 

At 𝑥 = 3 we find −2 = 3 + 𝐶2, from which 𝐶2 = -5. 
 

 

 

and finally 

2 
  = 5 − 𝑥 

√𝑦 

 
𝑦 = 

 4 
. ■ 

(𝑥−5)2 

 
b) Equations that do not explicitly contain the sought function and its 

derivatives up to order k - 1, equations of the form 

 

𝐹( 𝑥, 𝑦(𝑘), 𝑦(𝑘+1), … , 𝑦(𝑛)) = 0 

 
allow the order to be reduced by 𝑘 – units. 

Let's introduce a new unknown function by putting. Then 𝑦(𝑘) = 𝑧 
 

 
and equation 

 

will be rewritten as: 

𝑦(𝑘+1) = 𝑧′ ,…,𝑦(𝑘+2) = 𝑧′′, 𝑦(𝑛) = 𝑧(𝑛−𝑘) 

 

𝐹(𝑥, 𝑦(𝑘), 𝑦(𝑘+1), … , 𝑦(𝑛)) = 0 

 
𝐹(𝑥, 𝑧, 𝑧′, … , 𝑧(𝑛−𝑘)) = 0 

 
This is a differential equation of order 𝑛 − 𝑘 < 𝑛 with respect to the 

unknown function z. Substitution 𝑦(𝑘) = 𝑧 lowers the order of this equation by 𝑘 
units. 

Let us assume that the resulting (𝑛– 𝑘) th order equation is integrated with 

the relation 

 

𝑧 = 𝜓(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑛−𝑘), 

 

where С1, С2, … , С𝑛−𝑘 − are arbitrary constants, represents the set of its solutions. 

Substituting the value instead of 𝑧𝑦(𝑘), we obtain to determine the set of 

solutions to this equation of the form: 
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𝑦(𝑘) = 𝜓(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑛−𝑘) 

 
Integrating it sequentially 𝑘 times, we obtain a set of solutions to this 

equation: 

𝑦 = 𝜑(𝑥, 𝐶1, 𝐶2, … , 𝐶𝑛). 

 

Example. Given an equation 𝑦′′′ = 
𝑦′′ 

. Determine its solutions. Since the 
𝑥 

equation 𝑦′′′ = 
𝑦′′

 

𝑥 
does not contain 𝑦 and 𝑦′ , the order can be lowered by 

putting. In this case 𝑦′′ = 𝑧, the equation 𝑦′′′ = 𝑧′ will be written in the form 

𝑧′ = 
𝑧
. Solving it by the method of separation of variables, we obtain: 
𝑥 

 
𝑑𝑧 = 

𝑑𝑥 
, 𝑙𝑛|𝑧| = 𝑙𝑛|𝑥| + 𝑙𝑛|𝐶 |, 𝑧 = 𝐶 𝑥, 𝐶 ≠ 0 

  

𝑧 𝑥 1 1 1 

 
By adding the solution 𝑧 = 0, lost when separating the variables, we find 

the set of all solutions to the auxiliary equation in the form: 

 

𝑧 = 𝐶1𝑥, 

 

where 𝐶1 − is an arbitrary constant. 

Substituting 𝑦′′ instead of 𝑧 = 𝐶1𝑥 into the relation to determine 𝑦, we 

have a second-order equation: 

 

Integrating it we find: 

𝑦′′ = 𝐶1𝑥 
 

𝑥2 

𝑦′ = 𝐶1 
2 

+ 𝐶2, 

 
3 

𝑦 = 𝐶 
𝑥 

+ 𝐶 𝑥 + 𝐶 . 
1 3! 2 3 

 
This relationship will be a general solution to this equation in the regions 

 

{𝑥 > 0, −∞ < 𝑦 < +∞} 𝑎𝑛𝑑 {𝑥 < 0, −∞ < 𝑦 < +∞} 

 
c) Equations that do not contain an explicitly independent variable,equations 

of the 𝐹(𝑦, 𝑦′, … , 𝑦(𝑛)) = 0, form allow a decrease in order by one, if a new 

independent variable is taken, and the new desired function is taken 

𝑦′ = 𝑝. Applying the rule of differentiation of complex functions, we obtain: 
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𝑦′ = 𝑝, 𝑦′′ = 
𝑑𝑦′ 

= 
𝑑𝑦′ 

∙ 
𝑑𝑦 

= 
𝑑𝑝 

∙ 𝑝 
𝑑𝑥 𝑑𝑦 𝑑𝑥 𝑑𝑦 

 

 

𝑦′′′ = 𝑑𝑦′′ 
= 

𝑑𝑦′′ 
∙ 
𝑑𝑦 

= 𝑑𝑦′
′ 

 
 

 
∙ 𝑝 = 

𝑑𝑝 
𝑑 ( 

𝑑𝑦 
∙ 𝑝
) 

 
∙ 𝑝 = 𝑑2𝑝 

 
 

 
∙ 𝑝2 + ( 𝑑𝑝 2 

) 
 
∙ 𝑝 

etc. 

𝑑𝑥 𝑑
𝑦 

𝑑𝑥 𝑑𝑦 𝑑𝑦 𝑑𝑦2 𝑑𝑦 

Each of the derivatives y of x the order 𝑚 (1 ≤ 𝑚 ≤ 𝑛) is expressed in terms 

of the derivatives p of y the order and above 𝑚 − 1. Substituting their values into 

this equation, we obtain a differential equation of order for the new unknown 

function 𝑛 − 1: 

𝑑𝑝 𝑑𝑛−1𝑝 

𝐹1 (𝑦, 𝑝, 
𝑑𝑦 

, … , 
𝑑𝑦𝑛−1) = 0 

 
If this equation is integrated and 

Ф(𝑦, 𝑝, 𝐶1, 𝐶2, … , 𝐶𝑛−1) = 0 

 
set of its solutions, then to find solutions to this differential equation it remains to 

solve the first-order equation: 

Ф(𝑦, 𝑦′, 𝐶1, 𝐶2, … , 𝐶𝑛−1) = 0 . 

 

Example. Find solutions to the equation 𝑦у′′ − 𝑦′2 – 4уу′ = 0. This is a 

second-order equation that does not contain explicit equationsx. Let us denote by 

𝑝 = 𝑦′ the new required function, and we will consider y as a new independent 

variable. Then 𝑦′′ = 
𝑑𝑝 

∙ р. With the new variables, this equation looks like: 
𝑑𝑦 

𝑝𝑦 
𝑑𝑝 

− 𝑝2 − 4𝑦𝑝 = 0 
𝑑𝑦 

 

 

 
The equation 

𝑝 (𝑦 
𝑑
𝑝 

 
 

𝑑
𝑦 

− 𝑝 − 4𝑦) = 0 

𝑑
𝑝 

𝑦 
𝑑
𝑦 

− 𝑝 − 4𝑦 = 0 

 

𝑑𝑝 
 

 

𝑑𝑦 

𝑝 
= 4 + 

𝑦 
, 𝑦 ≠ 0 
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homogeneous; assuming 𝑝 = 𝑢𝑦, we find: 

 

𝑢 + 
𝑑𝑢 

 
 

𝑑
𝑦 

∙ 𝑦 = 4 + 𝑢 

 

𝑑𝑢 = 
4𝑑𝑦 

 
 

𝑦 
 

𝑢 = 4𝑙𝑛|𝑦| + 4𝑙𝑛|𝐶1| 
 

𝑝 = 4𝑦𝑙𝑛|𝐶1𝑦|. 
 

where 𝐶1 − is an arbitrary, non-zero constant. By setting  𝑝 = 
𝑑𝑦 

, to determine 
𝑑𝑥 

the solutions to this equation, we obtain the relation 

 
𝑑𝑦 

= 4𝑦𝑙𝑛|𝐶1𝑦|. 
𝑑𝑥 

Integrating it, we find a family of solutions to this equation: 

 

𝑙𝑛|𝑙𝑛|𝐶1𝑦|| = 4𝑥 + 𝐶2. 

 

Where С1 𝑎𝑛𝑑 С2 − are arbitrary constants. 

Since the set of solutions to the equation 

 

𝑝𝑦 
𝑑𝑝 

− 𝑝2 − 4𝑝𝑦 = 0 
𝑑𝑦 

 
consists of solutions to equations 

 

𝑑
𝑝 

𝑦 
𝑑
𝑦 

− 𝑝 − 4𝑦 = 0 𝑎𝑛𝑑 𝑝 = 0 

 
To the found family of solutions to this equation, we should add solutions to the 

equation 𝑦′ = 0, that is, 𝑦 = 𝐶. 
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4 - §. Linear differential equations of higher order 

Differential equation of nth order 

 

 

is called linear if the function 

𝐹(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛)) = 0 

 
𝐹(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛)) 

 
linear with respect to the desired function y and all its derivatives. [9]. 

Any linear differential equation of nth order can be written as: 

 

𝐴0(𝑥)𝑦(𝑛) + 𝐴1(𝑥)𝑦(𝑛−1) + ⋯ + 𝐴𝑛(𝑥)𝑦 + 𝐴𝑛+1(𝑥) = 0 (1) 

 

If the coefficients  𝐴0(𝑥), 𝐴1(𝑥), … , 𝐴𝑛(𝑥) are constant, equation (1) is 

called a linear equation with constant coefficients. The free 𝐴𝑛+1 (𝑥) term can be 

either constant or dependent onx. 

Linear differential equations are accepted in the so-called reduced form: 

𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑝𝑛(𝑥)𝑦 = 𝑞(𝑥) (2) 

 

To move from equation (1) to equation (2), it is enough to divide both sides 

of equation (1) 𝐴𝑛(𝑥) and designate 

 
𝑝 (𝑥) = 

 𝐴𝑖(𝑥)
, 𝑞(𝑥) = − 

𝐴𝑛+1(𝑥)
 

𝑖 𝐴0(𝑥) 𝐴0(𝑥) 

Equations (1) and (2) are equivalent, where 𝐴0(𝑥) ≠ 0. 

An equation of the form (2) with continuous coefficients 

𝑝1(𝑥), 𝑝2(𝑥), … , 𝑝𝑛(𝑥) and the right-hand side q(x) over some interval (a,b) of the 

OX axis (finite or infinite). 

Under such assumptions, equation (2) in the region 

{𝑎 < 𝑥 < 𝑏, −∞ < 𝑦 < +∞, −∞ < 𝑦′ < +∞, … , −∞ < 𝑦(𝑛−1) < +∞ } 
(n + 1) – dimensional space satisfies the conditions of the theorem of existence and 

uniqueness of solution. 

Equation (2), resolved with respect to the highest derivative, has the form: 

𝑦(𝑛) = −𝑝1(𝑥)𝑦(𝑛−1) − ⋯ − 𝑝𝑛(𝑥)𝑦 + 𝑞(𝑥) 
function  

𝑓(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛−1)) = −𝑝1(𝑥)𝑦(𝑛−1) − ⋯ − 𝑝𝑛(𝑥)𝑦 + 𝑞(𝑥) 

 
is continuous in this domain and has continuous partial derivatives with respect to 

𝑦, 𝑦′, … , 𝑦(𝑛−1): 
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𝜕𝑓 𝜕𝑓 𝜕𝑓 

𝜕𝑦 
= −𝑝𝑛(𝑥), 

𝜕𝑦′ 
= −𝑝𝑛−1(𝑥), … , 

𝜕𝑦(𝑛−1) = −𝑝1(𝑥). 

 
Any system of initial data 

𝑥 , 𝑦 , 𝑦′ , … , 𝑦(𝑛−1), 
0 0 0 0 

 
where 𝑎 < 𝑥 < 𝑏, 𝑦 , 𝑦′ , … , 𝑦(𝑛−1)– any numbers, determines, in a certain 

0 0 0 0 

neighborhood of points 𝑥0, a unique solution to equation (2). This solution will be 

determined not only in a neighborhood of points 𝑥0, but throughout the entire 

interval (𝑎, 𝑏). 
Equation (2) is called a linear inhomogeneous equation or a linear equation 

with the right-hand side if the function q(x) is not identically zero. If then 

𝑞(𝑥) ≡ 0, equation (2) is called a linear homogeneous equation or a linear equation 

without a right-hand side. 

 

 

 

4 - §.Linear homogeneous differential equations with arbitrary coefficients. 
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Consider the linear homogeneous equation 

𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑝𝑛(𝑥)𝑦 = 0 (1) 

 

with continuous coefficients in the interval (𝑎, 𝑏). [9]. 

Each point of the region𝜎, which is a strip {𝑎 < 𝑥 < 𝑏 − ∞ < 𝑦 < +∞}, passes 

through a solution to equation (1), and this solution is uniquely determined by 

specifying its initial conditions. Let us denote by 𝐿(𝑦) the result of applying to the 

functiony the set of operations indicated by the left side of equation (1): 

 

𝐿(𝑦) = 𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑝𝑛(𝑥)𝑦 (2) 

and we will call 𝐿(𝑦) a linear differential operator. 

The linear differential operator 𝐿(𝑦) assigns each n differentiable function to 

some function x. 

For example, if 

𝐿(𝑦) = 𝑦′′ − 5𝑥𝑦′ + 𝑥2𝑦, then 

 

𝐿(𝑒2𝑥) = 4𝑒2𝑥 − 10𝑥𝑒2𝑥 + 𝑥2𝑒2𝑥 

 

𝐿(𝑥5) = 20𝑥3 − 25𝑥5 + 𝑥7 

 
The linear differential operator (2) has the following properties. 

1) If there y is an n differentiable function and C -is any number, then 

𝐿(𝐶𝑦) = 𝐶𝐿(𝑦). 
Really, 

𝐿(𝐶𝑦) = (𝐶𝑦)(𝑛) + 𝑝1(𝑥)(𝐶𝑦)(𝑛−1) + ⋯ + 𝑝𝑛(𝑥)(𝐶𝑦) = 

 
= 𝐶𝑦(𝑛) + 𝑝1(𝑥)𝐶𝑦(𝑛−1) + ⋯ + 𝑝𝑛(𝑥)𝐶𝑦 = 

 
= 𝐶[𝑦(𝑛) + 𝑝1𝑦(𝑛−1) + ⋯ + 𝑝𝑛(𝑥)𝑦] = 𝐶𝐿(𝑦) 

 
2) If 𝑦1 and 𝑦2 are n - differentiable functions, then 

 

 

Really, 

𝐿(𝑦1 + 𝑦2) = 𝐿(𝑦1) + 𝐿(𝑦2). 

𝐿(𝑦1 + 𝑦2) = (𝑦1 + 𝑦2)2 + 𝑝1(𝑥)(𝑦1 + 𝑦2)(𝑛−1) + ⋯ + 𝑝𝑛(𝑥)(𝑦1 + 𝑦2) = 
 

=[𝑦(𝑛) + 𝑝 (𝑥)𝑦(𝑛−1) + ⋯ + 𝑝 (𝑥)𝑦 ] + [𝑦(𝑛) + 𝑝 (𝑥)𝑦(𝑛−1) + ⋯ + 𝑝 (𝑥)𝑦 ] = 
1 1 1 𝑛 1 2 1 2 𝑛 2 

= 𝐿(𝑦1) + 𝐿(𝑦2) 
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Solutions of a linear homogeneous equation have the following properties: 

1. If function y1 is a solution to equation (1), then function 𝐶𝑦1, where 𝐶 - is 

any number, is also its solution. 

2. If the functions 𝑦1 and 𝑦2 are solutions to equation (1), then the function 

𝑦1 + 𝑦2 is also its solution. 

These properties are a direct consequence of the properties of the linear operator 

𝐿(𝑦). 

Based on properties 1 and 2, we conclude that if 𝑦1, 𝑦2, … , 𝑦𝑛 -n any 

solutions of equation (1), then their linear combination 

 

𝐶1𝑦1 + 𝐶2𝑦2 + ⋯ + 𝐶𝑛𝑦𝑛 

 
with arbitrary constant coefficients 𝐶1, 𝐶2, … , 𝐶𝑛 is also a solution to this equation. 

 

 

 

5 - §. Linear dependence or linear independence of functions. 

Determinant of Vronsky properties 

 

Let us consider a system of n functions 𝜑1(𝑥), 𝜑2(𝑥), … , 𝜑𝑛(𝑥) defined on 

the same interval (𝑎, 𝑏) of the 𝑂𝑋 axis. [9] 
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( 
) 

These functions are called linearly dependent on the interval (𝑎, 𝑏) if there 

are numbers 𝛼1, 𝛼2, … , 𝛼𝑛 that are not all equal to zero, such that for all x 

intervals (𝑎, 𝑏) the relation is identically satisfied 

 

𝛼1𝜑1(𝑥) + 𝛼2𝜑2(𝑥) + ⋯ + 𝛼𝑛𝜑𝑛(𝑥) = 0 (1) 

 

If the functions 𝜑1(𝑥), 𝜑2(𝑥), … , 𝜑𝑛(𝑥)are linearly dependent on the interval 

(𝑎, 𝑏), then at least one of these functions is a linear combination of the others. 

Indeed, in relation (1) there are coefficients different from zero. Let, for 

example 𝛼𝑛 ≠ 0 . Then the function 𝜑𝑛(х) is a linear combination of the 

remaining functions of the system: 

𝜑𝑛 (𝑥) = 𝛽1 𝜑
1 

(𝑥) + 𝛽2 𝜑
2 

(𝑥) + ⋯ + 𝛽𝑛−1 𝜑𝑛−1 (𝑥), 𝑤ℎ𝑒𝑟𝑒 𝛽𝑖 = − 
 𝛼𝑖 , 

𝛼𝑛 

𝑖 = 1,2, … , 𝑛 – 1 

 
Example 1. Function 𝜑1(𝑥) = 𝑠𝑖𝑛2𝑥, 𝜑2(𝑥) = 𝑐𝑜𝑠2𝑥, 𝜑3(𝑥) ≡ 1 

are linearly dependent on any interval (𝑎, 𝑏). Indeed, assuming 

𝛼1 = 1, 𝛼2 = 1, 𝛼3 = −1, we obtain, based on the well – known trigonometric 

identity, that 

 

 

 

Example 2. Functions 

1 ∙ 𝑠𝑖𝑛2𝑥 + 1 ∙ 𝑐𝑜𝑠2𝑥 + (−1) ∙ 1 ≡ 0 

𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 − 1 ≡ 0 1 

− 1 ≡ 0 

𝜑1(𝑥) = 𝑠𝑖𝑛2𝑥, 𝜑2(𝑥) = 𝑥, 𝜑3(𝑥) = 𝑐𝑜𝑠2𝑥, 𝜑4(𝑥) = 1,  𝜑5(𝑥) = 𝑒𝑥 

linearly dependent on any interval (𝑎, 𝑏), assuming 𝛼1 = 1, 𝛼2 = 0, 𝛼3 = 1, 

𝛼4 = −1,  𝛼5 = 0  we get: 

1 ∙ 𝑠𝑖𝑛2𝑥 + 0 ∙ 𝑥 + 1 ∙ 𝑐𝑜𝑠2𝑥 + (−1) ∙ 1 + 0 ∙ 𝑒𝑥 ≡ 0. 
 

 

 

Example 3. Functions 

𝑠𝑖𝑛2𝑥 + 0 + 𝑐𝑜𝑠2𝑥 − 1 + 0 ≡ 0 
1 − 1 ≡ 0 

𝜑 (𝑥) = √𝑥, 𝜑 1 𝑥 = , 𝜑 (𝑥) ≡ 0 , 𝜑 (𝑥) = 𝑥2 
1 2 𝑥 3 4 

 
on the interval 0 < х < 1 are linearly dependent, assuming 𝛼1 = 0, 𝛼2 = 0, 

𝛼3 = 2, 𝛼4 = 0, we obtain: 

0 ∙ √𝑥 + 0 ∙ 
1 

+ 2 ∙ 0 + 0 ∙ 𝑥2 ≡ 0 
𝑥 

0 ≡ 0 
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The linear dependence of two unequal identically zero functions on the 

interval (a, b) is equivalent to the proportionality of these functions 

𝜑1(𝑥) 𝑎𝑛𝑑 𝜑2(𝑥). 

Indeed, if 

𝛼1𝜑1(𝑥) + 𝛼2𝜑2(𝑥) ≡ 0 
and 

𝛼 ≠ 0,  𝑡ℎ𝑎𝑡  𝜑 (𝑥) ≡ − 
𝛼2 𝜑 (𝑥). 

1 1 𝛼1 
2 

 
Functions 𝜑1(𝑥), 𝜑2(𝑥), … , 𝜑𝑛(𝑥) defined on the interval (𝑎, 𝑏) of the 

𝑂𝑋 axis are called linearly independent on this interval if from the relation 

𝛼1𝜑1(𝑥) + 𝛼2𝜑2(𝑥) + … + 𝛼𝑛𝜑𝑛(𝑥) ≡ 0 

 
where 𝛼1, 𝛼2, … , 𝛼𝑛 - are the numbers , that 𝛼1 = 𝛼2 = … = 𝛼𝑛 = 0. 

 
If the functions 𝜑1(𝑥), 𝜑2(𝑥), … , 𝜑𝑛(𝑥) are linearly independent on the 

interval (𝑎, 𝑏), then none of them is a linear combination of the others. 
 

 

Example. Functions 𝜑0(𝑥) ≡ 1, 𝜑1(𝑥) = 𝑥, 𝜑2(𝑥) = 𝑥2, … , 𝜑𝑛(𝑥) = 𝑥𝑛, 

where n - is any natural number, linearly independent on the entire number axis. 

Indeed, if you make a linear combination of these functions with coefficients 

𝛼0 , 𝛼1, 𝛼2, … , 𝛼𝑛, you get a polynomial: 

 

𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + … + 𝛼𝑛𝑥𝑛 

 
A polynomial of degree not greater than n cannot have more than n real 

roots. Therefore, the identity equality 

𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + … + 𝛼𝑛𝑥𝑛 ≡ 0 

 
perhaps only if 

𝛼0 = 𝛼1 = … = 𝛼𝑛 = 0 
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1 

Let's consider another example of linearly independent functions on the 

interval (0, 2). Let 

 

𝜑1 (𝑥) 
0 0 < 𝑥 < 1, 

= {
(𝑥 − 1)4 , 1 ≤ 𝑥 < 2, 

𝜑2
 

(𝑥) 
(𝑥 − 1)4, 0 < 𝑥 < 1 

= { 
0 , 1 ≤ 𝑥 < 2 

From this system is shown in Figure a) and b). 

If for any value x from the interval (0, 2) the equality holds 

 

𝛼1𝜑1(х) + 𝛼2𝜑2(х) ≡ 0 
 

then, substituting 𝑥 = 1, we get that 
2 

1 1 1 
𝜑1 (

2
) = 0, 𝜑2 (

2
) = 

16
 

 

𝛼1 
1 

∙ 0 + 𝛼2 ∙ 
16

 = 0, that is 𝛼2 = 0. 

 

Substituting then 𝑥 = 
3 

, we get that 
2 

3 1 3 
𝜑1 (

2
) = 

16 
, 𝜑2 (

2
) = 0, 

 

𝛼1 ∙ + 0 ∙ 0 = 0, that is 𝛼 
16 

= 0. 

 
Thus, from the identical equality 

 

𝛼1𝜑1(х) + 𝛼2𝜑2(х) ≡ 0 
 

it follows that 𝛼1 = 𝛼2 = 0. This means that the functions 𝜑1(х) 𝑎𝑛𝑑 𝜑2(х) are 

linearly independent. 

To study some systems of functions, linear dependence was proposed by the 

Polish mathematician Jozef Wronski. 

 

Theorem 1. If 𝑦1 and 𝑦2 are two particular solutions of a linear 

homogeneous second-order equation 

у′′ + 𝑎1𝑦′ + 𝑎2𝑦 = 0 (3) 

 

then 𝑦1 + 𝑦2 also has a solution to this equation. 

1 
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Proof. Since 𝑦1 and 𝑦2 are solutions to the equation, then 

 
у′′ + 𝑎1𝑦′ + 𝑎2𝑦1 = 0, 𝑦′′ + 𝑎1𝑦′ + 𝑎2𝑦2 = 0 (4) 
1 1 2 2 

 
Substituting the sum 𝑦1 + 𝑦2 into equation (3) and taking into account 

identities (4), we will have 

 
(𝑦1 + 𝑦2)′′ + 𝑎1(𝑦1 + 𝑦2)′ + 𝑎2(𝑦1 + 𝑦2) = (𝑦′′ + 𝑎1𝑦′ + 𝑎2𝑦1) + 

1 1 
+(𝑦′′ + 𝑎1𝑦′ + 𝑎2𝑦2) = 0 + 0 = 0 

2 2 

 
that is, 𝑦1 + 𝑦2 has a solution to the equation. 

Theorem 2. If 𝑦1  is a solution to equation (3) and C is a constant, then 

𝐶𝑦1 is also a solution to equation (3). 

Proof. Substituting the expression 𝐶𝑦1 into equation (3), we obtain 

 
(Су1)′′ + 𝑎1(𝐶𝑦1)′ + 𝑎2(𝐶𝑦1) = С(𝑦′′ + 𝑎1𝑦′ + 𝑎2𝑦1) = С ∙ 0 = 0 

1 1 

Thus the theorem is proven. 

Definition 2.Two solutions of equation (3) 𝑦1 𝑎𝑛𝑑 𝑦2 are called linearly 

independent in the segment [𝑎, 𝑏] if their ratio in this segment is not constant, that 

is, if 
у1 

≠ 𝑐𝑜𝑛𝑠𝑡 
у2 

Otherwise, the solutions are called linearly dependent. In other words, two 

solutions 𝑦1 𝑎𝑛𝑑 𝑦2 are called linearly dependent on the interval [𝑎, 𝑏] if such a 
constant number exists 𝜆, that in у1 = λ 𝑎𝑡 𝑎 ≤ 𝑥 ≤ 𝑏. This case 𝑦 = 𝜆𝑦 . 

у2 
1 2 

Definition3. If 𝑦1 𝑎𝑛𝑑 𝑦2 is the essence of the function from x, then the 

determinant 

𝑊(𝑦 , 𝑦 𝑦1 𝑦2 ) = | | = 𝑦 𝑦′ − 𝑦′ 𝑦 
1 2 𝑦′ 𝑦′ 1  2 1  2 

1 2 

is called the Wronski definition or the Livronskian definition of given functions. 

Theorem 3. If the functions 𝑦1 𝑎𝑛𝑑 𝑦2 are linearly independent on the 

interval [𝑎, 𝑏], then the Wronski determinant on this interval is identically equal to 

zero. 
Indeed, if 𝑦2 = 𝜆𝑦1, where 𝜆 = 𝑐𝑜𝑛𝑠𝑡, and 𝑦′ = 𝜆𝑦′ 

2 1 
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) 1
 1 

𝑊(𝑦 , 𝑦 𝑦1 𝑦2 𝑦 𝜆𝑦 𝑦1 𝑦1 = | | = | | = 𝝀 | | = 0 
1 2 𝑦′ 𝑦′ 𝑦′ 𝜆𝑦′ 𝑦′ 𝑦′ 

1 2 1 1 1 1 

Example 1. Given the equation 𝑦′′′ + 
2 

у′′ − у′ + 
1

 у = х and a 
х 𝑥𝑙𝑛𝑥 

known particular solution 𝑦1 = 𝑙𝑛𝑥 of the corresponding homogeneous 

equation. Reduce the order of the equation. 

Solution. Let's use the substitution 𝑦 = 𝑙𝑛𝑥 ∫ 𝑧𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑧 − new 

unknown function. Then, substituting the corresponding derivatives 
1 1 2𝑧 

𝑦′ = 
𝑥 

∫ 𝑧𝑑𝑧 + 𝑧𝑙𝑛𝑥, 𝑦′′ = − 
𝑥2 ∫ 𝑧𝑑𝑥 + + 𝑧′𝑙𝑛𝑥 

𝑥 

𝑦′′′ = 
2 

∫ 𝑧𝑑𝑥 − 
3𝑧 

+ 
3𝑧′ 

+ 𝑧′′𝑙𝑛𝑥 
𝑥3 𝑥2 𝑥 

into this equation, we obtain a second-order equation 

𝑧′′𝑙𝑛𝑥 + 
2𝑙𝑛𝑥

 
3 

∙ 𝑧′ + ( 
1

 
𝑥2 − 𝑙𝑛𝑥) 𝑧 = 𝑥 

Let the 𝑦1, 𝑦2, … , 𝑦𝑛 − 𝑛 functionsbe defined and be differentiated n – 1 

times on the interval (𝑎, 𝑏). 
Determinant of n th order 

𝑊 = | 

𝑦1 𝑦2 … 𝑦𝑛 
𝑦′1 𝑦′2 … 𝑦′𝑛 

… … … . … . | 

𝑦(𝑛−1) 𝑦(𝑛−1) … 𝑦(𝑛−1) 
1 2 𝑛 

is called the Wronski determinant, or Liveronskian, for these functions. The 

Wronski determinant is also a function of x defined on the interval (𝑎, 𝑏): 

𝑊 = 𝑊(𝑥). 

If you put it on the matrix, this will turn out 𝑦1 = 𝑠𝑖𝑛𝑥, 𝑦2 = 𝑒−𝑥, 𝑦3 = 𝑥2, 

 
𝑠𝑖𝑛𝑥 𝑒−𝑥 𝑥2 

𝑊 = | 𝑐𝑜𝑠𝑥 −𝑒−𝑥 2𝑥| 
−𝑠𝑖𝑛𝑥 𝑒−𝑥 2 

Theorem 4. If the functions 𝑦1, 𝑦2, … , 𝑦𝑛 − 𝑛 are linearly dependent on 

the interval (𝑎, 𝑏), then the Wronski determinant compiled for them on this interval 

is identically equal to zero. 
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Proof.Since the functions 𝑦1, 𝑦2, … , 𝑦𝑛 are linearly dependent on the interval 

(𝑎, 𝑏), then at least one of these functions, let it be 𝑦𝑛 , is a linear combination of 

the remaining functions: 

 

𝑦𝑛 = 𝛽1𝑦1 + 𝛽2𝑦2 + ⋯ + 𝛽𝑛−1𝑦𝑛−1 

 
where 𝛽1, 𝛽2, … , 𝛽𝑛−1- is some number. 

Differentiating this identity successively n–1 times, we obtain: 

 

𝑦′ = 𝛽 𝑦′ + 𝛽 𝑦′ + ⋯ + 𝛽 𝑦′ , 
𝑛 1  1 2  2 𝑛−1 𝑛−1 

……………………………………. 

𝑦(𝑛−1) = 𝛽 𝑦(𝑛−1) + 𝛽 𝑦(𝑛−1) + ⋯ + 𝛽 𝑦(𝑛−1) 
𝑛 1 1 2 

2 

𝑛−1 𝑛−1 

The Wronski determinant corresponding to this system of functions will be 

written in the form: 

𝑦1 𝑦2 … 𝑦𝑛 
𝑦′ 𝑦′ … 𝑦′ 

𝑊(𝑥) = | 1 2 𝑛 
|=

 
… … . … . 

𝑦(𝑛−1) 𝑦(𝑛−1) … 𝑦(𝑛−1) 
1 2 𝑛 

𝑦1 𝑦2 … 𝛽1𝑦1 + 𝛽2𝑦2 + ⋯ + 𝛽𝑛−1𝑦𝑛−1 
𝑦′ 𝑦′ … 𝛽1𝑦′ + 𝛽2𝑦′ + ⋯ + 𝛽𝑛−1𝑦′ 

=| 
1 2 1 2 𝑛−1 | 

… . . … . … . 

𝑦(𝑛−1) 𝑦(𝑛−1) … 𝛽 𝑦(𝑛−1) + 𝛽 𝑦(𝑛−1) + ⋯ + 𝛽 𝑦(𝑛−1) 

1 2 1 1 2 

2 

𝑛−1 𝑛−1 

Subtracting from the elements of the last column of the determinant the 

corresponding elements of the first column, multiplied by𝛽1, then the elements of 

the second column, multiplied by 𝛽2, etc., elements (𝑛 − 1) of the last column, 

multiplied by 𝛽𝑛−1, we obtain that 

 

𝑦1 𝑦2 … 𝑦𝑛−1 0 
𝑦′ 𝑦′ … 𝑦′ 0 

𝑊(𝑥) = | 
1

 2
 

𝑛−1 | ≡ 0 

… … . … . 
𝑦

(𝑛−1) 
𝑦

(𝑛−1) 
… 𝑦

(𝑛−1)  
0 

1 2 𝑛−1 

 
Theorem 5. If are 𝑦1, 𝑦2, … , 𝑦𝑛 − 𝑛 linearly independent on the interval (𝑎, 

𝑏) solutions of a linear homogeneous equation of n th order 𝐿(𝑦) = 02, then 

the Wronski determinant compiled for them at the first point of the interval (𝑎, 𝑏) 
is not equal to zero. 
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Proof.Let's assume the opposite. Let us assume that there is a point at which 

𝑥0, 𝑎 < 𝑥0 < 𝑏 the Wronski determinant, compiled for the functions 

𝑦1, 𝑦2, … , 𝑦𝑛, is equal to zero: 

 

𝑦1(𝑥0) 𝑦2(𝑥0) … 𝑦𝑛(𝑥0) 
𝑦′(𝑥0) 𝑦′ (𝑥0) … 𝑦′ (𝑥0) 

𝑊(𝑥) = | 1 2 𝑛 | = 0 
… … . … . 

𝑦
(𝑛−1)(𝑥 ) 𝑦

(𝑛−1)(𝑥 ) … 𝑦(𝑛−1)(𝑥 ) 
1 0 2 0 𝑛 0 

 
Let us consider an auxiliary system of n linear homogeneous algebraic 

equations with unknowns 𝛼1, 𝛼2, … , 𝛼𝑛: 

𝑎1𝑦1(𝑥0) + 𝑎2𝑦2(𝑥0) + ⋯ + 𝛼1𝑦𝑛(𝑥0) = 0, 
𝛼1𝑦′ (𝑥0) + 𝛼2𝑦′ (𝑥0) + ⋯ + 𝛼 𝑦′ (𝑥0) = 0 (2) 

1 2 𝑛 𝑛 

………………………. 

𝛼 𝑦(𝑛−1)(𝑥 ) + 𝛼 𝑦(𝑛−1)(𝑥 ) + ⋯ + 𝛼 𝑦(𝑛−1)(𝑥 ) = 0 
1 1 0 2 2 0 𝑛 𝑛 0 

 
This linear homogeneous system of equations has a non - zero solution, 

since the determinant of the system 𝑊(𝑥0) (the determinant of the coefficients of 

the unknowns) is equal to zero. 

Let us denote by, �̃�1 , 𝛼̃2 , … , �̃�𝑛 - the non - zero solution of system (2) and 

consider the function 

�̃� = 𝛼̃1𝑦1 + 𝛼̃2𝑦2 + ⋯ + �̃�𝑦𝑛  
 

This function, being a linear combination of solutions to the equation  𝐿(𝑦) = 0 
will itself be a solution to the same equation. Because 

�̃� = 𝛼̃1𝑦1 + 𝛼̃2𝑦2 + ⋯ + �̃�𝑦𝑛  
�̃�′  = �̃�1 𝑦 ′ + �̃�2 𝑦 ′ + ⋯ + 𝛼̃𝑦′ 

1 2 𝑛 𝑛 

……………….. 

�̃�(𝑛−1) = �̃�𝑦
(𝑛−1) 

+ �̃�𝑦
(𝑛−1) 

+ ⋯ + �̃�𝑦
(𝑛−1) 

1 1 2 2 𝑛 𝑛 

 
that at 𝑥 = 𝑥0 we have equations (2): 

 

�̃�(𝑥0) = �̃�1 𝑦1 (𝑥0 ) + �̃�2 𝑦2 (𝑥0 ) + ⋯ + �̃�𝑦𝑛(𝑥0) = 0 

�̃�′(𝑥0) = �̃�1 𝑦 ′ (𝑥0 ) + �̃�2 𝑦 ′  (𝑥0) + ⋯ + �̃�𝑦 ′ (𝑥0) = 0 
1 2 

……………….. 
𝑛 𝑛 

�̃�(𝑛−1)(𝑥 ) = �̃�𝑦(𝑛−1)(𝑥 ) + �̃�𝑦 (𝑛−1)(𝑥 ) + ⋯ + �̃�𝑦(𝑛−1)(𝑥 ) = 0 
0 1 
1 

0 2 2
 0 

𝑛 𝑛 0 
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This means that the solution у̃ to the equation 𝐿(𝑦) = 0 satisfies the initial 

conditions 𝑥0, 0, 0, … ,0. 
Every linear homogeneous equation has a so-called trivial solution, 

identically equal to zero: 𝑦 = 0. This solution also satisfies the initial conditions 

𝑥0, 0, 0, … ,0. 
By the theorem of existence and uniqueness of the solution of the equation 

𝐿(𝑦) = 0 specifying the initial data system uniquely determines the solution, that 

is, the solution must coincide with the solution identically у̃ equal to zero: 

 

у̃ ≡ 0, or, what's more, ̃𝛼 1 𝑦1  + 𝛼̃2𝑦2 + ⋯ + �̃�𝑦𝑛  ≡ 0 
 

Since among the numbers, 𝛼̃1 , �̃�2 , … 𝛼̃𝑛 there are different from zero, it 

follows from the last relation that the functions 𝑦1, 𝑦2, … , 𝑦𝑛 interval (𝑎, 𝑏) are 

linearly dependent, which contradicts the condition. The assumption is that the 

determinant 𝑊(𝑥) can vanish on the interval 

(a, b) is eliminated. 

Example. As was established in the example above, the functions 

 

𝜑0(𝑥) ≡ 1, 𝜑1(𝑥) = 𝑥, 𝜑2(𝑥) = 𝑥2, … , 𝜑𝑛(𝑥) = 𝑥𝑛. 

 

where n is any natural number, linearly independent on the entire number axis. 

Indeed, if you make a linear combination of these functions with coefficients 

𝛼0 , 𝛼1, 𝛼2, … , 𝛼𝑛, you get a polynomial: 

 

𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + … + 𝛼𝑛𝑥𝑛 

 
A polynomial of degree not greater than n cannot have more than n real 

roots. Therefore, the identity equality 

 

𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + … + 𝛼𝑛𝑥𝑛 ≡ 0 

 
perhaps only if 𝛼0 = 𝛼1 = … = 𝛼𝑛 = 0 

 
Let's consider another example of linearly independent functions on the 

interval (0, 2). Let 

 

𝜑1 (𝑥) = {
0 0 < 𝑥 < 1, 

𝜑
 

(𝑥 − 1)4 , 1 ≤ 𝑥 < 2, 2 
(𝑥) 

(𝑥 − 1)4, 0 < 𝑥 < 1 
= { 

0 , 1 ≤ 𝑥 < 2 



134  

are linearly independent on the interval (0, 2). Wherein 

 

′ ( ) { 
0 0 < 𝑥 < 1 ′ ( ) 4(𝑥 − 1)3, 0 < 𝑥 < 1 

𝜑1 𝑥 =  
4(𝑥 − 1)3, 1 ≤ 𝑥 < 2 

, 𝜑2  𝑥 = {
 0, 1 ≤ 𝑥 < 2 

 
Let’s compose a Vronsky determinant for them: 

 
𝑊(𝑥) = |

𝜑1(𝑥) 𝜑2(𝑥) 
′ ′ | 

𝜑1(𝑥) 𝜑2(𝑥) 

 
For anyone 𝑥, 0 < х < 1, we have: 

 
0 (𝑥 − 1)4 

𝑊(𝑥) = |
0 4(𝑥 − 1)3| = 0 

 
For any one 𝑥, 1 ≤ 𝑥 < 2, we also get that 

 
(𝑥 − 1)4 0 

𝑊(𝑥) = |
4(𝑥 − 1)3 0

| = 0 

 
that is, on the interval (0, 2)  𝑊(𝑥) ≡ 0. 

The property of the Wronski determinant follows that if 𝑦1, 𝑦2, … , 𝑦𝑛 are 

solutions of the linear homogeneous equation 𝐿(𝑦) = 0, defined on the interval 

(𝑎, 𝑏), then the Wronski determinant constructed for them is either identically 

equal to zero on the interval (𝑎, 𝑏), or not equal to zero at the first point of the 

interval (𝑎, 𝑏). 

 
Try to decide for yourself [3] 

 

1. Integrate the equation  𝑦′′ + 
2 

у′ + у = 0,  , which has a particular 
х 

solution 𝑦1 = 
𝑠𝑖𝑛𝑥 

.
 

𝑥 
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1 

2. Reduce the order and integrate the equation 𝑦′′𝑠𝑖𝑛2𝑥 = 2𝑦, which has a 

particular solution 𝑦 = 𝑐𝑡𝑔𝑥. 

3. The equation 𝑦′′ − 
у′ 

+ 
у 

= 0  has a particular solution 𝑦 = 𝑥. Lower the 
х х 

order and integrate this equation. 

 

4. The equation 𝑦′′ + (𝑡𝑔𝑥 – 2 𝑐𝑡𝑔𝑥) 𝑦′ + 2𝑐𝑡𝑔2𝑥 ∙ 𝑦 = 0 has a particular 

solution 𝑦 = 𝑠𝑖𝑛𝑥. Lower the order and integrate this equation. 

 

Answers. 

 

1) 𝑦 = 
𝑠𝑖𝑛𝑥 

∙ ∫ 
𝐶1𝑑𝑥 

= 
𝑠𝑖𝑛𝑥 (𝐶

 − 𝐶 𝑐𝑡𝑔𝑥) = 𝐶 ∙ 
𝑠𝑖𝑛𝑥 

− 𝐶
 𝑐𝑜𝑠𝑥 

  

𝑥 𝑠𝑖𝑛2𝑥 𝑥 2

 1 

2 𝑥 1 𝑥 

2) 𝑦 = 𝐶2 + (𝐶1 − 𝐶2𝑥)𝑐𝑡𝑔𝑥 
 

3) 𝑦 =  𝑥𝑙𝑛2 
2 

𝑥 + 𝐶1𝑥𝑙𝑛𝑥 + 𝐶2𝑥 

 
4) 𝑦 = 𝐶1𝑠𝑖𝑛𝑥 + 𝐶2𝑠𝑖𝑛2𝑥 

 

 
6 - §. Characteristic equation 

 

1) Characteristic equation. 

Differential equation 

 

𝑦′′ + 𝑝𝑦′ + 𝑞𝑦 = 0 (1) 
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where p and q are constant numbers. To understand the essence of the matter, let's 

start with an example [7] 

𝑦′′ − 5𝑦′ + 6𝑦 = 0 (2) 

 

The solution to this differential equation must be a function that, when 

substituted into the equation, transforms its identity. The zero part of the equation 

is the sum of the function itself and its derivatives 𝑦′ 𝑎𝑛𝑑 𝑦′′ taken with some 

constant  coefficients.  For  such  a  sum  to  turn  out  to  be  identically  zero 

𝑦, 𝑦′ 𝑎𝑛𝑑 𝑦′′, they must be similar to each other. Therefore, for example, none of 

the functions 

𝑦 = 𝑥3, 𝑦 = 𝑡𝑔𝑥, 𝑦 = 𝑙𝑛𝑥 

 
obviously cannot be a solution to equation (2). The solution to differential equation 

(2) will be the function 𝑦 = 𝑒𝑥 . Substituting it into the equation, we are 

immediately convinced that it is not a solution. But not only, but each 𝑦 = 𝑒𝑥 of 

the functions 𝑦 = 𝑒2𝑥, 𝑦 = 𝑒3𝑥, 𝑦 = 𝑒−𝑥, … will also be similar to its derivatives. To 

avoid an infinite number of trials, consider the function 

𝑦 = 𝑒𝑘𝑥 (3) 

and we will try to select 𝑘 so that this function satisfies (2). Because 

𝑦′ = 𝑘𝑒𝑘𝑥, 𝑦′′ = 𝑘2𝑒𝑘𝑥 

 
then, substituting (3) to the left side of (2), we get 

 

 

or, which is the same thing, 

𝑘2𝑒𝑘𝑥 − 5𝑘𝑒𝑘𝑥 + 6𝑒𝑘𝑥 

 
𝑒𝑘𝑥(𝑘2 − 5𝑘 + 6) 

For this expression to be zero, it must be 

 

𝑘2 − 5𝑘 + 6 = 0 (4) 

 

We will find the required k by solving equation (4). The root equations (4) are 

 

𝑘1 = 2, 𝑘2 = 3 

 
Thus, we have found even two of the values we needk. In accordance with 

these names, two solutions have been found 

 

𝑦1 = 𝑒2𝑥, 𝑦2 = 𝑒3𝑥 
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our differential equation. These solutions are linearly independent, since 
𝑦2 

= 𝑒𝑥 ≠ 𝑐𝑜𝑛𝑠𝑡 
𝑦1 

 
These solutions make it possible to construct a general solution to equation (2), 

namely 

𝑦 = 𝐶1𝑒2𝑥 + 𝐶2𝑒3𝑥 

 
Let us now move on to consider the general case of differential equation (1). 

Here, too, the desired function must be similar to its derivatives 𝑦′ 𝑎𝑛𝑑 𝑦′′ . 

Therefore, it is natural here to engage in the selection of such that the function 

 

𝑦 = 𝑒𝑘𝑥 
turned out to be a solution to differential equation (1). Substituting this function to 

the left side of (1) gives the expression 

 

𝑒𝑘𝑥(𝑘2 + 𝑝𝑘 + 𝑞) 

 
For this expression to be zero, k must be the root of the quadratic equation 

 

𝑘2 + 𝑝𝑘 + 𝑞 = 0 (5) 

 

which is called the characteristic equation for the differential equation (1). 

When solving the quadratic equation (5), 3 cases may occur: 

I. Roots (5) real and various 

II. Roots (5) real and equal 

III. The roots (5) are imaginary. 

Let the roots (5) be real numbers 

𝑘1 = 𝑎, 𝑘2 = 𝑏, (𝑎 ≠ 𝑏) 

 

Then (1) has 2 solutions  

𝑦1 = 𝑒𝑎𝑥, 𝑦2 = 𝑒𝑏𝑥 
and due to their linear independence, since 

 
𝑒𝑎𝑥 

𝑒𝑏𝑥 ≠ 𝑐𝑜𝑛𝑠𝑡 

the general solution (1) is: 
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𝑦 = 𝐶1𝑒𝑎𝑥 + 𝐶2𝑒𝑏𝑥 (6) 

 

Examples.1) Characteristic equation here 𝑦′′ − 12𝑦′ + 35𝑦 = 0. 

 
𝑘2 − 12𝑘 + 35 = 0 

Its roots are because the general solution of the differential equation 

𝑘1 = 5, 𝑘2 = 7 

𝑦 = 𝐶1𝑒5𝑥 + 𝐶2𝑒7𝑥 

 
2) 𝑦′′ − 16𝑦 = 0. Here is the characteristic equation 𝑘2 − 16 = 0 . His roots are a 

general solution 𝑘1,2 = ± 4 

 

𝑦 = 𝐶1𝑒4𝑥 + 𝐶2𝑒−4𝑥 

 
3) 𝑦′′ − 2𝑦′ = 0. Here the characteristic equation has the form. His roots are 

because 𝑘2 − 2𝑘 = 0 , 𝑘1 = 0, 𝑘2 = 2 

𝑦 = 𝐶1 + 𝐶2𝑒2𝑥 

 
4) 𝑦′′′ − 3𝑦′′ + 2𝑦′ = 0. Here the characteristic equation has the form 

𝑘3 − 3𝑘2 + 2𝑘 = 0 or 𝑘(𝑘2 − 3𝑘 + 2) = 0 
It has roots 

Means, 

 

𝑘1 = 0, 𝑘2 = 1, 𝑘3 = 2. 

 
𝑦 = 𝐶1 + 𝐶2𝑒𝑥 + 𝐶3𝑒2𝑥 

 
The general solution of a 3rd order differential equation depends on three arbitrary 

constants. 

5) 𝑦(4) − 29𝑦′′ + 100𝑦 = 0. Here is the characteristic equation 

 

𝑘4 − 29𝑘2 + 100 = 0 

that is, it is a biquadratic equation. Believing 𝑘2 = 𝑧, we find 

 

𝑧2 − 29𝑧 + 100 = 0 
where 𝑧1 = 4, 𝑧2 = 25. 

 

But then 𝑘1,2 = ±2, 𝑘3,4 = ±5 and 

 

𝑦 = 𝐶1𝑒2𝑥 + 𝐶2𝑒−2𝑥 + 𝐶3𝑒5𝑥 + 𝐶4𝑒−5𝑥
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2)  The case of equal roots of the characteristic equation. 

For the equation 

𝑦′′ − 6𝑦′ + 9𝑦 = 0 (1) 

The characteristic equation has the form 

𝑘2 − 6𝑘 + 9 = 0 (2) 

 

This quadratic equation has only one root 𝑘 = 3. Therefore, our theory gives only 

a code for a particular solution 

𝑦1 = 𝑒3𝑥 (3) 

 

Differential equation (1), but this is not enough to construct its general solution. 

Equation (2) has more than one, but two equal roots  𝑘1 = 3 𝑎𝑛𝑑 𝑘2 = 3, but 

here it turns out to be just a turn of phrase that doesn’t save anything. Indeed, if 

instead of one solution (3) we consider two of them 

𝑦1 = 𝑒3𝑥, 𝑦2 = 𝑒3𝑥 (4) 

and suppose 𝑦 = 𝐶1𝑒3𝑥 + 𝐶2𝑒3𝑥 

then yall will not be a general solution (1), because 

 

𝑦 = (𝐶1 + 𝐶2)𝑒3𝑥 = 𝐶𝑒3𝑥 (𝐶 = 𝐶1 + 𝐶2), 

 

that is, y depends only on one arbitrary constant. This is completely unnatural, the 

“two” solutions (4) are linearly independent. Solving equation (1) and function 

𝑦1 = 𝑥𝑒3𝑥 (5) 

 

This is done by simple substitution to the у2 left side of (1). Because 

 
𝑦′ = 𝑒3𝑥 + 3𝑥𝑒3𝑥, 𝑦′′ = 6𝑒3𝑥 + 9𝑥𝑒3𝑥 
2 2 

and this is identically equal to zero. This means that (5) is also a solution to 

differential equation (1), and the linear independence of functions (3) and (5) is 

obvious. Notthenfunction 

𝑦 = 𝐶1𝑒3𝑥 + 𝐶2𝑥𝑒3𝑥 

 
will be a general solution to equation (1). 
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2 2 

Let us now consider the cases of equal roots of the characteristic equation in 

general form. 

For the equation 

𝑦′′ + 𝑝𝑦′ + 𝑞𝑦 = 0 (6) 

characteristic serves as equation 

𝑘2 + 𝑝𝑘 + 𝑞 = 0 (7) 

 

His roots 
 

𝑝 
𝑘1,2 = − 

2 
± 

 
 

𝑝2 
− 𝑞 

4 

 
The condition for the coincidence of these roots is equality 

 
𝑝2 

= 𝑞 (8) 
4 

Let this equality be fair. Then (7) has only one root 
𝑝 

𝑘1 = − 
2

 

leading to resolution  
𝑝 

 
 

𝑦1 = 𝑒−2
𝑥

 

 
differential equation (6). Let us make sure that alongу1 with solution (6) there will 

be 

 

Because 

 

 

 

 
𝑝 𝑝 

𝑝 
 

 

𝑦2 = х𝑒−2
𝑥

 

 
𝑝 

 
 
 

 
𝑝 𝑝2 𝑝 

𝑦′ = 𝑒−2
𝑥 −  𝑥𝑒−2

𝑥, 𝑦′′ = −𝑝𝑒−2
𝑥 + 

2 
𝑥𝑒−2

𝑥
, 

4 

then the result of substituting 𝑦2 to the left side of (6) has the form 
 

𝑝 𝑝2 𝑝 𝑝 𝑝 𝑝 𝑝 

−𝑝𝑒−2
𝑥 + 𝑥𝑒−2

𝑥 + 𝑝 (−𝑒−2
𝑥 − 

4 
 𝑥𝑒−2

𝑥) + 𝑞𝑥𝑒−2
𝑥

 
2 

or, which is the same thing, 
 

(𝑞 − 

 

𝑝2 

4 

 
𝑝 

 
 

) 𝑥𝑒−2
𝑥 

(9) 

By virtue of (8), this expression is equal to zero, which proves the statement. 

This means that 𝑦1andу2 are two (obviously linearly independent) solutions of (6) 

and the general solution of this differential equation 

√ 
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𝑝 𝑝 

𝑦 = 𝐶1𝑒−2
𝑥 + 𝐶2𝑥𝑒−2

𝑥
. 

 

Theorem.If the characteristic equation (7) has only one root 

𝑘1 = 𝑎, 
tone along with function  

𝑦1 = 𝑒𝑎𝑥 

 
the solution to equation (6) will be the function 

 

𝑦2 = 𝑥𝑒𝑎𝑥 (10) 

Note that when, in addition to the root  𝑘1 = 𝑎, the characteristic equation 

(7) has a root  𝑘1 = 𝑏 different from it, then function (10) will not be a solution to 

(7). Indeed, substitution of (10) to the left side of (6) gives (9), and this expression 

is identically equal to zero only under condition (8), that is, under the condition 

that the roots of equation (7) are equal. 

Examples.1) Here is the characteristic equation 𝑦′′ − 10𝑦′ + 25𝑦 = 0. 

 
𝑘2 − 10𝑘 + 25 = 0 

The only root of this equation 𝑘1 = 5. The general solution to the differential 

equation is: 

𝑦 = 𝐶1𝑒5𝑥 + 𝐶2𝑥𝑒5𝑥 

 
2) 𝑦′′ = 0.Here the characteristic equation is: 𝑘2 = 0. It has only one root 𝑘1 = 0. 
This means that the general solution of the differential equation 

𝑦 = 𝐶1 + 𝐶2𝑥 

3) Given an equation. Write a characteristic equation 𝑦′′ − 4𝑦′ + 4𝑦 = 0 

𝑘2 − 4𝑘 + 4 = 0. 

We find its roots: 

 

The general integral will be 

 

𝑘1 = 𝑘2 = 2. 

 

𝑦 = 𝐶1𝑒2𝑥 + 𝐶2𝑥𝑒2𝑥 
 
 

7 - §. Inhomogeneous linear equations of the second order with constant 

coefficients 

 

Let us have the equation 

у′′ + ру′ + 𝑞𝑦 = 𝑓 (𝑥) (1) 
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where 𝑝 and 𝑞 - are real numbers. [1]. 

I. Let the right side of equation (1) be the product of an exponential function 

and a polynomial, that is, it has the form 

 

𝑓 (𝑥) = 𝑃𝑛(𝑥) 𝑒𝛼𝑥 (2) 

 

where 𝑃𝑛(x) is a polynomial of n th degree. Then the following special cases are 

possible: 

a) Number 𝜶 is not a root of the characteristic equation 

 

𝑘2 + 𝑝𝑘 + 𝑞 = 0 

 
In this case, a particular solution must be sought in the form 

 

у∗ = (𝐴0𝑥𝑛 + (3)𝐴1𝑥𝑛−1 + ⋯ + 𝐴𝑛)𝑒𝛼𝑥 = 𝑄𝑛(𝑥)𝑒𝛼𝑥 (3) 

 

Indeed, substituting у∗into equation (1) and reducing all terms by a factor 

𝑒𝛼𝑥, we will have: 
𝑄′′(𝑥) + (2𝛼 + 𝑝)𝑄′ (𝑥) + (𝛼2 + 𝑝𝛼 + 𝑞)𝑄 (𝑥) = 𝑃 (𝑥) (4) 
𝑛 𝑛 𝑛 𝑛 

𝑄𝑛(𝑥)- n polynomial of degree, n – 1– polynomial of degree , 𝑄′𝑛(𝑥) 

𝑄′′𝑛(𝑥)- a polynomial of degree n – 2. Thus, to the left and to the right of the 

equal sign there are polynomials of the n th degree. Equating the coefficients at the 

same powers of x, we obtain a system of 𝑛 + 1 equations for determining the 

unknown coefficients  𝐴0, 𝐴1, 𝐴2, … , 𝐴𝑛. 

b) number 𝜶 is a simple (single) root of the characteristic equation. 

If, in this case, we began to look for a particular solution in the form (3), 

then in equality (4) on the left we would get a polynomial of (𝑛 − 1) degree, since 

the coefficient of 𝑄𝑛(𝑥), that is, is equal to zero, and the polynomials 

𝛼2 + 𝑝𝛼 + 𝑞 

𝑄′𝑛(𝑥) 𝑎𝑛𝑑 𝑄′′𝑛(𝑥) have a degree less than n. There fore, under no 

circumstances 

𝐴0, 𝐴1, 𝐴2, … , 𝐴𝑛 equality (4) would not be an identity. Therefore, in the case under 

consideration, a particular solution must be taken in the form of a polynomial of 

the (𝑛 + 1) 𝑡ℎ degree, but without a free term: 

 

𝑦 ∗ = 𝑥𝑄𝑛(𝑥)𝑒𝛼𝑥 
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c) Number 𝜶 is a double root of the characteristic equation. 

Then, as a result of substituting the function into the differential equation 

𝑄𝑛(𝑥)𝑒𝛼𝑥 the degree of the polynomial is reduced by two units. Indeed, if 

𝜶 – rootcharacteristic equation 𝛼2 + 𝑝𝛼 + 𝑞 = 0, then; moreover, since𝜶is a 

double root, then 2𝛼 = − 𝑟. 𝑆𝑜, 2𝛼 + 𝑝 = 0. 
Consequently, the left side of equality (4) will remain, that is, a polynomial 

of (𝑛 − 2) degree. In order to obtain a polynomial of degree n as a result of 

substitution, one should look for a particular solution in the form of a product 

𝑄′′
𝑛(𝑥)𝑒𝛼𝑥 to a polynomial of (𝑛 + 2) degree. In this case, the free term of this 

polynomial and terms of the first degree will disappear during differentiation; 

therefore, they may not be included in a particular solution. 

So, in the case when𝜶is a double root of the characteristic equation, a 

particular solution can be taken in the form 

 

𝑦 ∗= 𝑥2𝑄𝑛(𝑥)𝑒𝛼𝑥 

 
Example 1.Find a general solution to the equation 

𝑦′′ + 4𝑦′ + 3𝑦 = 𝑥 
Solution. The general solution of the corresponding homogeneous equation is 

 

у̅ = С1𝑒−𝑥 + С2𝑒−3𝑥 

 
Since the right side of this inhomogeneous equation has the form 𝑥𝑒0𝑥 (that 

is, the form 𝑃1(𝑥)𝑒0𝑥, and 0 is not the root of the characteristic equation 

𝑘2 + 4𝑘 + 3 = 0 , then we will look for a particular solution in the form 

𝑦∗ = 𝑄1(𝑥)𝑒0𝑥, that is, let's put 

𝑦 = А0𝑥 + А1 

 
Substituting this expression into the given equation, we will have 

 

4𝐴0 + 3(𝐴0 𝑥 + 𝐴1) = 𝑥 

 
Equating the coefficients at the same powers of 𝑥, we get 

 

 

where 

3𝐴0 = 1 , 4𝐴0 + 3𝐴1 = 0 

𝐴 = 
1
, 𝐴 = − 

4
 

0 3 1 9 

Hence, 



144  

 

Common decision 

𝑦∗ = 
1 

х − 
4

 
3 9 

𝑦 = у̅ + у∗ 
will at 

𝑦 = С1 е−х + С2 е−3х 
1 4 

+  х −  
3 9 

 
Example 2. Find the general solution to the equation 

𝑦′′ + 9𝑦 = (𝑥2 + 1)𝑒3𝑥 
Solution.We can easily find a general solution to the homogeneous equation: 

 

у̅ = С1𝑐𝑜𝑠3𝑥 + С2𝑠𝑖𝑛3𝑥 

 
The right side of the given equation (𝑥2 + 1)𝑒3𝑥 has the form 𝑃2(𝑥)𝑒3𝑥. 

Since coefficient 3 in the exponent is the root of the characteristic equation, we 

look for a particular solution in the form 

 

𝑦 ∗ = 𝑄2(𝑥)𝑒3𝑥 or 𝑦 ∗ = (𝐴𝑥2 + 𝐵𝑥 + 𝐶)𝑒3𝑥. 

 
Substituting this expression into the differential equation, we will have 

 

[9(𝐴𝑥2 + 𝐵𝑥 + 𝐶) + 6 (Ах + В) + 2А + 9(Аx2 + Вх + С)]𝑒3𝑥 = (𝑥2 + 1)𝑒3𝑥 

 
Reducing by 𝑒3𝑥 and equating the coefficients at the same powers of from x, we 

get 

 

 

where 

18𝐴 = 1, 12𝐴 + 18𝐵 = 0, 2𝐴 + 6𝐵 + 18𝐶 = 1, 

𝐴 = 
1

 
18 

, 𝐵 = − 
1

 
27 

, 𝐶 = 
5 

. 
81 

 
Therefore, the particular solution will be 

 

 

and general solution 

у∗ = ( 
1

 
18 

х2 − 
1

 
2
7 

х + 
5 

) е3х 
81 

𝑦 = С1 𝑐𝑜𝑠3𝑥 + С2 
1 

𝑠𝑖𝑛3𝑥 + ( 
1
8 

х2 − 
1

 
2
7 

х + 
5 

) е3х 
81 

Example 3. Solve the equation 𝑦′′ − 7𝑦′ + 6𝑦 = (𝑥 – 2)𝑒𝑥. 
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Solution. Here the right-hand side has the form  𝑃1(𝑥)𝑒1𝑥, and the coefficient 1 

in the exponent is a simple root of the characteristic polynomial. Therefore, we 

look for a particular solution in the form 

 

у∗ = х𝑄1(х)𝑒𝑥 or у∗ = х(Ах + В)ех 

 
Substituting this expression into the equation, we have 

 

[(𝐴𝑥2 + 𝐵𝑥) + (4𝐴𝑥 + 2𝐵) + 2𝐴 − 7(𝐴𝑥2 + 𝐵𝑥) − 7(2𝐴𝑥 + 𝐵) 

+ 6(𝐴𝑥2 + 𝐵𝑥)]𝑒𝑥 = (𝑥 − 2)𝑒𝑥 
or 

(−10𝐴𝑥 – 5𝐵 + 2𝐴)𝑒𝑥 = (𝑥 – 2)𝑒𝑥 
Equating the coefficients for the same powers of x, we get 

 

− 10 𝐴 = 1, − 5𝐵 + 2𝐴 = − 2 
 

from where 𝐴 = − 
1

 
10 

, 𝐵 = 
9 

. There fore, the particular solution is 
25 

 
in general 

у∗ = х (− 
1

 
10 

х +  
9 

) ех 
25 

𝑦 = С1 е6х + С2 ех + х (− 
1

 
10 

х + 
9 

) ех 
25 

 
II. Let the right side have the form 

𝑓 (𝑥) = 𝑃(𝑥)𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 + 𝑄(𝑥)𝑒𝛼𝑥 𝑠𝑖𝑛𝛽𝑥 (5) 

where 𝑃(𝑥) and 𝑄(𝑥) - are polynomials. 

This case can be considered using the technique used in the previous case, if 

we move from trigonometric functions to exponential ones. Replacing 𝑐𝑜𝑠𝛽𝑥 and 

𝑠𝑖𝑛𝛽𝑥 th rough the exponential functions using Euler’s formulas, we get 

 

𝑓(𝑥) = 𝑃(𝑥)𝑒𝛼𝑥 
𝑒𝑖𝛽𝑥+𝑒−𝑖𝛽𝑥 

+ 𝑄(𝑥)𝑒𝛼𝑥 
𝑒𝑖𝛽𝑥−𝑒−𝑖𝛽𝑥

 

or 

𝑓(𝑥) 

 

= [
1

 
2 

 
𝑃(𝑥) 

 

 

+ 
1 

2𝑖 

 
𝑄(𝑥)]𝑒 

2 

 
(𝛼+𝑖𝛽)𝑥 

 

+ [
1

 
2 

 
𝑃(𝑥) − 

 

 
1 

 

2𝑖 

2𝑖 

 

𝑄(𝑥)]𝑒 

 

 
(𝛼−𝑖𝛽)𝑥 

 
(6) 
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Here in square brackets there are polynomials whose degrees are equal to the 

highest degree of the polynomials 𝑃(𝑥) and 𝑄(𝑥). Thus, we obtained the right- 

hand side of the form considered in case 1. 

So, if the right side of equation (1) has the form 

 

f (x) = P(x) e𝜶xcos𝛽𝑥 + 𝑄(𝑥)𝑒𝛼𝑥 𝑠𝑖𝑛𝛽𝑥 (7) 

 

where 𝑃(𝑥) and 𝑄(𝑥) - are polynomials in x, then the form of the particular 

solution is determined as follows: 

a) if the number 𝛼 + 𝑖𝛽 is not the root of the characteristic equation, then a 

particular solution to equation (1) should be sought in the form 

 

𝑦∗ = 𝑈(𝑥)𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 + 𝑉(𝑥)𝑒𝛼𝑥 𝑠𝑖𝑛𝛽𝑥 (8) 

 

where 𝑈(𝑥) and 𝑉(𝑥) - are polynomials whose degree is equal to the highest 

degree of the polynomials 𝑃(𝑥) and 𝑄(𝑥); 
b) if the number is the root of the characteristic equation, then we look for a 

particular solution in the form 𝛼 + 𝑖𝛽 

𝑦∗ = 𝑥[𝑈(𝑥)𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 + 𝑉(𝑥)𝑒𝛼𝑥 𝑠𝑖𝑛𝛽𝑥] (9) 

 

Moreover, in order to avoid possible errors, it should be noted that the 

indicated forms of particular solutions (8) and (9), obviously, are preserved even in 

the case when on the right side of equation (1) one of the polynomials 

P(x) and Q(x) are identically equal to zero, that is, when the right-hand side 

has the form 𝑃(𝑥)𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 𝑜𝑟 𝑄(𝑥)𝑒𝛼𝑥𝑠𝑖𝑛𝛽𝑥. 
Let us next consider an important special case. Let the right-hand side of a 

second-order linear equation have the form 

 

𝑓 (𝑥) = 𝑀 𝑐𝑜𝑠𝛽 𝑥 + 𝑁𝑠𝑖𝑛𝛽𝑥 (7′ ) 

 

where  𝑀 and 𝑁 - are constant numbers. 

a) if 𝛽𝑖 it is not a root of the characteristic equation, then a particular solution 

should be sought in the form 

𝑦∗ = 𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥 ( 8' ) 

 

b) if 𝛽𝑖 is the root of the characteristic equation, then a particular solution should 

be sought in the form 
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𝑦∗ = х (𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥 ) ( 9' ) 

 

Note that function (7′ ) is a special case of function (7) 

( 𝑃(𝑥) = 𝑀, 𝑄(𝑥) = 𝑁, 𝛼 = 0); functions ( 8′ ) and ( 9′ ) are special cases of 

(8) and (9). 

Example 4. Find the general integral of a linear inhomogeneous equation 

𝑦′′ + 2𝑦′ + 5𝑦 = 2 𝑐𝑜𝑠𝑥 
 

Solution.Characteristic equation 

 

has roots 

 

𝑘2 + 2𝑘 + 5 = 0 

𝑘1 = −1 + 2𝑖 , 𝑘2 = −1 − 2𝑖. 

 

Therefore, the general integral of the corresponding homogeneous equation is 

 

�̅� = 𝑒−𝑥(𝐶1𝑐𝑜𝑠2𝑥 + 𝐶2𝑠𝑖𝑛2𝑥) 

 
We are looking for a special solution to the inhomogeneous equation in the form 

 

𝑦∗ = 𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥 

 
where 𝐴 and 𝐵 − are constant coefficients to be determined. 

Substituting 𝑦∗ into the given equation, we will have 

 

−𝐴𝑐𝑜𝑠𝑥 − 𝐵𝑠𝑖𝑛𝑥 + 2(−𝐴𝑠𝑖𝑛𝑥 + 𝐵𝑐𝑜𝑠𝑥) + 5(𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥) = 2𝑐𝑜𝑠𝑥 

 
Equating the coefficients cosx and sinx, we obtain two equations for determining A 

and B: 

− 𝐴 + 2𝐵 + 5𝐴 = 2, − 𝐵 – 2𝐴 + 5𝐵 = 0 
 

whence 𝐴 = 
2

 
5 

, 𝐵 = 1. The general solution to this equation is: у̅ = у + у∗ 5 

that is  
𝑦 = 𝑒−𝑥(𝐶 𝑐𝑜𝑠2𝑥 + 𝐶 𝑠𝑖𝑛2𝑥) + 

2 
𝑐𝑜𝑠𝑥 + 

1 
𝑠𝑖𝑛𝑥 

1 2 5 5 

 
Example 5. Solve the equation 𝑦′′ + 4𝑦 = 𝑐𝑜𝑠2𝑥. 
Solution. The characteristic equation has roots 𝑘1 = 2𝑖 , 𝑘2 = −2𝑖; Therefore, 

the general solution of the homogeneous equation has the form 
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�̅� = 𝐶1𝑐𝑜𝑠2𝑥 + 𝐶2𝑠𝑖𝑛2𝑥 
We look for a particular solution of the inhomogeneous equation in the form 

 

 

Then 

𝑦∗ = х(𝐴𝑐𝑜𝑠2𝑥 + 𝐵𝑠𝑖𝑛2𝑥) 

 
𝑦∗′ = 2х(−𝐴𝑠𝑖𝑛2𝑥 + 𝐵𝑐𝑜𝑠2𝑥) + (𝐴𝑐𝑜𝑠2𝑥 + 𝐵𝑠𝑖𝑛2𝑥) 

 
𝑦∗′′ = 4𝑥(−𝐴𝑐𝑜𝑠2𝑥 − 𝐵𝑠𝑖𝑛2𝑥) + 4 (−𝐴𝑠𝑖𝑛2𝑥 + 𝐵𝑐𝑜𝑠2𝑥) 

Substituting these expressions of derivatives into this equation and equating 

the coefficients at 𝑐𝑜𝑠2𝑥 and 𝑠𝑖𝑛2𝑥, we obtain a system of equations for 

determining 𝐴 𝑎𝑛𝑑 𝐵; 4𝐵 = 1, − 4𝐴 = 0,  𝑤ℎ𝑒𝑛𝑐𝑒 𝐴 = 0, 𝐵 = 
1 

. 
4 

Thus, the general integral of this equation 

 

𝑦 = 𝐶1 𝑐𝑜𝑠2𝑥 + 𝐶2 𝑠𝑖𝑛2𝑥 + 
1 

х𝑠𝑖𝑛2𝑥 . 
4 

 
Example 6. Solve the equation 𝑦′′ − 𝑦 = 3𝑒2𝑥𝑐𝑜𝑠𝑥 
Solution. The right side of the equation has the form 

 

𝑓 (𝑥) = 𝑒2𝑥(𝑀 𝑐𝑜𝑠𝑥 + 𝑁 𝑠𝑖𝑛𝑥) 

 
where 𝑀 = 3, 𝑁 = 0. The characteristic equation 𝑘2 − 1 = 0 has roots 𝑘1 = 1, 
𝑘2 = −1 . The general solution to the homogeneous equation is 

 

�̅� = 𝐶1ех + 𝐶2е−х 

 
Since the number 𝛼 + 𝑖𝛽 = 2 + 𝑖 ∙ 1 is not a root of the characteristic 

equation, we look for a particular solution in the form 

 

𝑦 ∗ = 𝑒2𝑥 (А𝑐𝑜𝑠𝑥 + В𝑠𝑖𝑛𝑥) 

 
Substituting this expression into the equation, we obtain after bringing 

similar terms 

(2𝐴 + 4𝐵)𝑒2𝑥𝑐𝑜𝑠𝑥 + ( − 4𝐴 + 2𝐵)𝑒2𝑥𝑠𝑖𝑛𝑥 = 3𝑒2𝑥𝑐𝑜𝑠𝑥. 

 
Equating the coefficients cosx and sinx, we get 

 

2𝐴 + 4𝐵 = 3, − 4𝐴 + 2𝐵 = 0 
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( 

+ 𝑒 ( 

Hence 𝐴 = 
3

 
10 

, В = 
3 

. Therefore, the particular solution 
5 

 

 

 
in general 

𝑦 ∗= 𝑒2𝑥 
 3 

 
10 

𝑐𝑜𝑠𝑥 + 
3 

 

 𝑠𝑖𝑛𝑥) 
5 

𝑦 = 𝐶 ех + 𝐶 е−х 2𝑥 
 3  3 

1 2 𝑐𝑜𝑠𝑥 +  𝑠𝑖𝑛𝑥) 
10 5 

 
Try to decide for yourself [3] 

 

1. Find a partial solution of the equation 𝑦′′ − 2𝑦′ − 3𝑦 = 𝑒4𝑥, satisfying 

the boundary conditions у|𝑥=𝑙𝑛2 = 1; у|𝑥=2𝑙𝑛2 = 1. 

2. Integrate the equation 𝑦′′ + 𝑦′ − 2𝑦 = 𝑐𝑜𝑠𝑥 – 3𝑠𝑖𝑛𝑥 under the initial 

conditions 𝑦 (0) = 1, 𝑦′(0) = 2. 
3. Integrate the equation 𝑦′′ − 𝑦′ = 𝑐ℎ2𝑥 under the initial conditions 

𝑦(0) = 𝑦′ (0) = 0. 

 
Answers. 

1) 𝑦 = 
1 

𝑒4𝑥 + 
652 

𝑒−𝑥 − 
491 

𝑒3𝑥 
5 75 600 

 
2) 𝑦 = 𝑒𝑥 + 𝑠𝑖𝑛𝑥 

 

3) 𝑦 = − 
1

 
3 

𝑒𝑥 + 
1 

𝑐ℎ2𝑥 + 
3 

1 𝑠ℎ2𝑥 
6 

 

 
8 - §. Inhomogeneous linear equations of higher orders 

 

Consider the equation 

 

𝑦(𝑛) + 𝑎1𝑦(𝑛−1) + ⋯ + 𝑎𝑛𝑦 = 𝑓(𝑥) (1) 
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where 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑓(𝑥) − are continuous functions of from x. Let us know the 

general solution 

�̅� = 𝐶1у1 + 𝐶2у2 + ⋯ + С𝑛𝑦𝑛 (2) 

 

corresponding homogeneous equation [1] 

𝑦(𝑛) + 𝑎1𝑦(𝑛−1) + ⋯ + 𝑎𝑛𝑦 = 0 (3) 

 

Theorem. If is the general solution of homogeneous equation (3), and 

𝑦 ∗ − is a particular solution of inhomogeneous equation (1), then 

 

𝑦 = у̅ + у∗ 

 
is a general solution to an inhomogeneous equation. 

Thus, the problem of integrating equation (1), as in the case of a second- 

order equation, is reduced to finding a particular solution to the inhomogeneous 

equation. 

As in the case of a second-order equation, a particular solution to equation (1) can 

be found by varying arbitrary constants, considering in expression (2) 𝐶1, 𝐶2, … , 𝐶𝑛 

as functions of from x. 

Let's create a system of equations 

 
𝐶′𝑦1 + 𝐶′𝑦2 + ⋯ + 𝐶′ 𝑦  = 0 

1 2 𝑛 𝑛 
𝐶′𝑦′ + 𝐶′𝑦′ + ⋯ + 𝐶′ 𝑦′ = 0 

1 1 2 2 𝑛 𝑛 

… … … … … … … … … … … … … … … … . . 
𝐶′𝑦

(𝑛−2) 
+ 𝐶′ 𝑦

(𝑛−2) 
+ ⋯ + 𝐶′ 𝑦

(𝑛−2) 
= 0

 (4) 

1 1 2 2 𝑛 𝑛 

{𝐶′𝑦
(𝑛−1) 

+ 𝐶′ 𝑦
(𝑛−1) 

+ ⋯ + 𝐶′ 𝑦
(𝑛−1) 

= 𝑓(𝑥)
 

1 1 2 2 𝑛 𝑛 

This system of equations with unknown functions 𝐶′, 𝐶′, … , 𝐶′ has well- 

defined solutions. 
1 2 𝑛 

So, system (4) can be solved with respect to functions 𝐶′, 𝐶′, … , 𝐶′ . 

Finding and integrating, we get 
1 2 𝑛 

 
𝐶1 = ∫ 𝐶′𝑑𝑥 + ̅�̅�1̅, 𝐶2 = ∫ 𝐶′𝑑𝑥 + 𝐶̅̅2̅ , …, 𝐶𝑛 = ∫ 𝐶′ 𝑑𝑥 + ̅�̅��̅� 

1 2 𝑛 
 

where ̅�̅�1̅,𝐶2̅ , …,𝐶𝑛̅ − are integration constants. 

Let us prove that in this case the expression 

 

𝑦∗ = 𝐶1у1 + 𝐶2у2 + ⋯ + С𝑛𝑦𝑛 (5) 
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1 2 𝑛 

is a general solution to the inhomogeneous equation (1). 

We differentiate expression (5) n times, taking into account equalities (4) 

each time; then we will have 

 

𝑦∗ = 𝐶1у1 + 𝐶2у2 + ⋯ + С𝑛𝑦𝑛 

 
𝑦 ∗′= 𝐶1у′1 + 𝐶2у′2 + ⋯ + С𝑛𝑦′𝑛 
……………………………… 

𝑦∗(𝑛)=𝑦∗(𝑛)  = 𝐶 𝑦(𝑛) + 𝐶 𝑦(𝑛) + ⋯ + С 𝑦(𝑛) + 𝑓(𝑥) 
1 1 2 2 𝑛 𝑛 

 
Multiplying the terms of the first, second, 𝐶1, 𝐶2, … , 𝐶𝑛 and finally, the last 

equation by 𝑎𝑛, 𝑎𝑛−1, … , 𝑎1 and 1, respectively, and adding, we get 

 

𝑦∗(𝑛) + 𝑎1
 𝑦∗(𝑛−1) + 𝑎 𝑦∗(𝑛−2) + ⋯ + 𝑎 

𝑦∗ = 𝑓(𝑥) 

 
Since 𝑦1, 𝑦2, … , 𝑦𝑛 − are partial solutions of a homogeneous equation, and 

therefore the sums of terms obtained by adding along the vertical columns are 

equal to zero. 

Therefore, the function 

 

𝑦∗ = 𝐶1у1 + 𝐶2у2 + ⋯ + С𝑛𝑦𝑛 

 
where 𝐶1, 𝐶2, … , 𝐶𝑛 −are the functions of otx defined by equations (4) is a solution to 

the inhomogeneous equation (1). This solution depends on n arbitrary constants 

̅�̅�1̅, 𝐶 2̅ , …,𝐶𝑛̅ . As in the case of a second-order equation, it is proved that this is a 

general solution. 

 

Example 1. Find a general solution to the equation 𝑦𝐼𝑉 − 𝑦 = 𝑥3 + 1. 

Solution.The characteristic equation 𝑘4 − 1 = 0 has roots 

 

𝑘1 = 1, 𝑘2 = −1, 𝑘3 = 𝑖, 𝑘4 = −𝑖 

 
we find a general solution to the homogeneous equation 

 

у̅ = С1ех + С2е−х + С3𝑐𝑜𝑠𝑥 + С4𝑠𝑖𝑛𝑥 

 
We look for a particular solution of the inhomogeneous equation in the form 

2 𝑛 
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𝑦∗ = 𝐴0𝑥3 + 𝐴1𝑥2 + 𝐴2𝑥 + 𝐴3 

 
Differentiating 𝑦 ∗ four times and substituting the resulting expressions into the 

given equation, we get 

−𝐴0𝑥3 − 𝐴1𝑥2 − 𝐴2𝑥 − 𝐴3 = 𝑥3 + 1 

 

Let us equate the coefficients at the same degrees x: 

−𝐴0 = 1, −𝐴1 = 0, −𝐴2 = 0, −𝐴3 = 1 
Hence, 

𝑦∗ = −𝑥3 − 1 

 
the general integral of the inhomogeneous equation is found by the formula 

 

 

that is 

𝑦 = у̅ + 𝑦 ∗ 

 
𝑦 = С1ех + С2е−х + С3𝑐𝑜𝑠𝑥 + С4𝑠𝑖𝑛𝑥 − 𝑥3 − 1 

 
Example 2. Solve equation 𝑦𝐼𝑉 − 𝑦 = 5𝑐𝑜𝑠𝑥 
Solution. The characteristic equation 𝑘4 − 1 = 0 has roots 𝑘1 = 1, 𝑘2 = −1, 

𝑘3 = 𝑖 , 𝑘4 = −𝑖. Therefore, the general solution to the corresponding 

homogeneous equation is: 

�̅� = С1ех + С2е−х + С3𝑐𝑜𝑠𝑥 + С4𝑠𝑖𝑛𝑥 

 
Further, the right-hand side of this inhomogeneous equation has the form 

 

 

where 𝑀 = 5, 𝑁 = 0. 

𝑓(𝑥) = 𝑀𝑐𝑜𝑠 𝑥 + 𝑁𝑠𝑖𝑛𝑥 

Since i is a simple root of the characteristic equation, we look for a particular 

solution in the form 

𝑦 ∗ = 𝑥 (А𝑐𝑜𝑠𝑥 + В𝑠𝑖𝑛𝑥) 

 
Substituting this expression into the equation, we find 

 

 

where 

4А𝑠𝑖𝑛𝑥 − 4𝐵𝑐𝑜𝑠𝑥 = 5 𝑐𝑜𝑠𝑥 
 

5 
4𝐴 = 0, − 4𝐵 = 5 𝑜𝑟  𝐴 = 0, 𝐵 = −  . 

4 
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Therefore, a particular solution to the differential equation is 

 

5 
𝑦 ∗ = − 

4 
𝑥 𝑠𝑖𝑛𝑥 

but by a general decision 

 

𝑦 = С1 ех + С2 е−х 
5 

+ С3𝑐𝑜𝑠𝑥 + С4𝑠𝑖𝑛𝑥 − 
4 

𝑥𝑠𝑖𝑛𝑥 

 
 

Try to decide for yourself [3] 

 

1. Solve the equation 𝑦′′ − 2𝑦′ + 2𝑦 = 𝑥2. 

 
2. Solve the equation y′′ + 𝑦 = 𝑥𝑒𝑥 + 2𝑒−𝑥 

 
3. Solve the equation 𝑦′′′ + 𝑦′′ − 2𝑦′ = 𝑥 – 𝑒𝑥 

 
4. Find a solution to the equation у′′ + у = 3 𝑠𝑖𝑛𝑥, satisfying the boundary 

conditions 
𝜋 

𝑦(0) + у′ (0) = 0, у( 
2 

) + у′ 𝜋) = 0. 
2 

 

Answers. 

1) 𝑦 = 𝑒𝑥(𝐶1 

 
𝑐𝑜𝑠𝑥 + 𝐶2 

 

𝑠𝑖𝑛𝑥) + 
1 (𝑥 + 1)2 
2 

 

2) 𝑦 = 𝐶1 𝑐𝑜𝑠𝑥 + 𝐶2 𝑠𝑖𝑛𝑥 + 
1 (𝑥 − 1)𝑒𝑥 + 𝑒−𝑥 2 

 

3) 𝑦 = 𝐶1 + 𝐶2 𝑒𝑥 + 𝐶3 𝑒−2𝑥 
1 

−  𝑥 
4 

(𝑥 + 1) 

 

 
 

 −  𝑥𝑒𝑥 
3 

 

4) 𝑦 = 
1 

[(𝜋 + 2 
2 

)𝑐𝑜𝑠𝑥 − (𝜋 − 2 )𝑠𝑖𝑛𝑥] − 
3 

𝑥𝑐𝑜𝑠𝑥 
2 

 
 

9 - §. Euler's differential equation with variable coefficients 

 

These are differential equations 

 

𝑥2𝑦′′ + 𝑝𝑥𝑦′ + 𝑞𝑦 = 0 (1) 

1 

( 
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where p and q are constants. Equations (1) are called Euler equations. [7]. 

The solutions to differential equation (1) are similar to those used for 

differential equations with constant coefficients. For these latter, the solution had 

to be similar to its derivatives. For differential equation (1), the derivatives 𝑦′ and 

𝑦′′ should become similar after multiplying  y them with 𝑥 𝑎𝑛𝑑 𝑥2, respectively. 

A function has this property. Substituting its left side (1), we find 𝑦 = 𝑥𝑘 

𝑥𝑘[𝑘(𝑘 − 1) + 𝑝𝑘 + 𝑞]. 

 

For this expression to be identical to zero, k must be the root of the quadratic 

equation 

𝑘(𝑘 − 1) + 𝑝𝑘 + 𝑞 = 0 (2) 

which is an analogue of the characteristic equation. If (2) has different real 

roots 𝑘1 = 𝑎, 𝑘2 = 𝑏, the solution to (2) is: 

𝑦 = 𝐶1𝑥𝑎 + 𝐶2𝑥𝑏 (3) 

If the roots (2) have the form 

𝑘1,2 = 𝑎 ± 𝑏𝑖 

instead of (3) we have 
𝑦 = 𝐶′𝑥𝑎+𝑏𝑖 + 𝐶′𝑥𝑎−𝑏𝑖 = 𝑥𝑎(𝐶′𝑥𝑏𝑖 + 𝐶′𝑥−𝑏𝑖) (4) 

1 2 1 2 

 
Where С′ 𝑎𝑛𝑑 С′ are arbitrary constants. Since then 𝑥 = 𝑒𝑙𝑛𝑥, 

1 2 

 

𝑥𝑏𝑖 = 𝑒(𝑏𝑙𝑛𝑥)𝑖 = cos(𝑏𝑙𝑛𝑥) + 𝑖𝑠𝑖𝑛(𝑏𝑙𝑛𝑥) 

 
𝑥−𝑏𝑖 = 𝑒−(𝑏𝑙𝑛𝑥)𝑖 = cos(𝑏𝑙𝑛𝑥) − 𝑖𝑠𝑖𝑛(𝑏𝑙𝑛𝑥) 

Substituting in (4) the names of constants, we find 

 

𝑦 = 𝑥𝛼[𝐶1 cos(𝑏𝑙𝑛𝑥) + 𝐶2sin (𝑏𝑙𝑛𝑥)] 

 
Finally, if (2) has only one root 𝑘 = 𝑎, then we must consider equation (1) 

as a limit for ∆𝑎 → 0 the equation with solutions 

у1 = 𝑥𝑎, 𝑦2 = 𝑥𝑎+∆𝑎 

The solution to the last equation will be the function 

𝑥𝑎+∆𝑎 − 𝑥𝑎 

∆𝑎 

The solution to equation (1) in the case of interest to us will be 
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lim 
∆𝑎→0 

𝑥𝑎+∆𝑎 − 𝑥𝑎 
 

 

∆𝑎 

𝜕(𝑥𝑎) 
= 

𝜕𝑎 
= 𝑥𝑎𝑙𝑛𝑥 

Hence the general solution (1) will be 

 

 

Examples. 

𝑦 = 𝐶1𝑥𝑎 + 𝐶2𝑥𝑎𝑙𝑛𝑥 

1. 𝑥2𝑦′′ − 8𝑥𝑦′ + 20𝑦 = 0. Here equation (2) looks like 

 

𝑘(𝑘 − 1) − 8𝑘 + 20 = 0, 

 
k2 − 9𝑘 + 20 = 0 

 
𝐷 = (−9)2 − 4 ∙ 1 ∙ 20 = 81 − 80 = 1 

 

𝑘1 = 
9 − 1 

2 ∙ 1 
= 4, 𝑘2 = 

9 + 1 
= 5 

2 ∙ 1 

and the general solution of the differential equation 

𝑦 = 𝐶1𝑥4 + 𝐶2𝑥5 ■ 

2. 𝑥2𝑦′′ − 3𝑥𝑦′ + 4𝑦 = 0. Here equation (2) looks like 

 

𝑘2 − 4𝑘 + 4 = 0 

single root 𝑘 = 2. Hence, the general solution of the differential equation 

 

𝑦 = 𝐶1𝑥2 + 𝐶2𝑥2𝑙𝑛𝑥 

 
3. 𝑥2𝑦′′ − 𝑥𝑦′ + 2𝑦 = 0.Equation (2) will be.Its roots are equal. This means that 

the general solution of the differential equation 𝑘2 − 2𝑘 + 2 = 0; 
𝑘1,2 = 1 ± 𝑖 

𝑦 = 𝑥(𝐶1𝑐𝑜𝑠𝑙𝑛𝑥 + 𝐶2𝑠𝑖𝑛𝑙𝑛𝑥). ■ 

 

10 - §. Approximate solution of differential equation 

Euler–Cauchy method 

𝑦′ = 𝑓 (𝑥, 𝑦) (1) 

followed by an initial condition [13] 
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𝑦|𝑥=𝑥
0 

= 𝑦0 (2) 

 

Since the value у0 of the said solution corresponds to the value х0, then 

the matter comes down to finding the difference у1 − у0, that is ∆у, the increment 

caused by the increment ∆х = х1 − х0 . But it’s ∆х very little. Then, ∆у with great 

accuracy, we can imagine the calculation of the auto point 𝑥0, based on which the 

argument x received an increment. The function is a solution to equation (1), then 

for each we have 𝑦′ = 𝑓 (𝑥, 𝑦), where y , represents the value of the function that 

corresponds exactly to this. For 𝑥 = 𝑥0 will be 
 

 

and that's why 

𝑦′ = 𝑓 (𝑥0, 𝑦0) 

 
∆𝑦 ≅ 𝑓 (𝑥0, 𝑦0)∆𝑥 

 
We find the replacement ∆𝑦 𝑎𝑛𝑑 ∆𝑥𝑦1 − 𝑦0 𝑎𝑛𝑑 𝑥1 − 𝑥0 

 
𝑦1 ≅ 𝑦0 + 𝑓(𝑥0, 𝑦0)(𝑥1 − 𝑥0) (3) 

 

This is the basic calculation formula using the Euler–Cauchy method. Its 

accuracy is higher, the smaller the difference 𝑥1 − 𝑥0. 

Using formula (3) we passed from the value of 𝑦0 to the value of 𝑦1, we 

can go from the value of 𝑦1 to the value of 𝑦2 of our solution, which corresponds 

to argument 𝑥2, close to much 𝑥1. 

We illustrate the above with three examples. 

1) Let 𝑦 = 𝑦 (𝑥) be the solution of the differential equation 
 

 

which satisfies the condition 

𝑦′ = 2 
𝑦

 
𝑥 

(4) 

 

 

I'll find y (2). 
𝑦|𝑥=1 = 1 (5) 

Since the interval k from 𝑥 = 1 before 𝑥 = 2 cannot be considered small, 
we divide it into 10 equal parts by points 𝑥1 = 1,2 , 𝑥2 = 1,2 , … 

By formula (3) 
1 

у1 = 1 + 2 ∙ 
1 

∙ 0,1 = 1,2 

The remaining values of the function 𝑦(𝑥) are found similarly, and it is 
convenient to place the calculations in the following table, the structure of which 
will not require any further ∆у 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 у′∆𝑥 explanation 
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X at y′ ∆у 
1 1 2 0,2 

1,1 1,2 2,18 0,218 

1,2 1,418 2,36 0,236 

1,3 1,654 2,54 0,254 

1,4 1,908 2,73 0,273 

1,5 2,181 2,91 0,291 

1,6 2,472 3,09 0,309 

1,7 2,781 3,27 0,327 

1,8 3,108 3,45 0,345 

1,9 3,453 3,63 0,363 

2 3,816   

 

This table shows that  

𝑦(2) = 3,816 

 
Equation (4) is easily solved by separating variables, which gives 

 

 

where 

𝑑𝑦 
= 

𝑦 

2𝑑𝑥 
 

 

𝑥 

𝑙𝑛𝑦 = 2𝑙𝑛𝑥 + 𝑙𝑛𝐶, 𝑡ℎ𝑒𝑡 𝑖𝑠 𝑦 = 𝐶𝑥2 

 
To satisfy condition (5), we must take 𝐶 = 1. Thus, a particular solution is 𝑦 = 

𝑥2. The exact value of 𝑦(2) = 4. The absolute error of the value 

𝑦(2) = 3,816 obtained by the method Euler–Cauchy, equal to 0,184, arelative 
0,184 

𝛿 = = 0,046 = 4,6% 
4 

2) Apply the method to find 𝑦(2), if y(x) is a solution to the differential 

equation 
𝑦′ = 

𝑦 
+ 

𝑥
 (6)  

𝑥 10 

 

satisfying the condition  

у|х=1 = 0,1 (7) 

 

Divide the segment from 𝑥 = 1 before 𝑥 = 2 into 10 equal parts and make a 

table. 

 

x y y′ ∆у 
1 0,1 0,2 0,02 

1,1 0,12 0,219 0,022 
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1,2 0,142 0,238 0,024 

1,3 0,166 0,258 0,026 

1,4 0,192 0,277 0,028 

1,5 0,220 0,297 0,030 

1,6 0,250 0,316 0,032 

1,7 0,282 0,336 0,034 

1,8 0,316 0,356 0,036 

1,9 0,352 0,375 0,038 

2 0,39 - - 

 

It follows from the table that 𝑦(2) = 0,39. On the other hand, solving 

differential equation (6) by substitution, we have 𝑦 = 𝑢𝑣 
 

𝑢′𝑣 + 𝑢 (𝑣′ 
𝑣 𝑥 

− ) = 
𝑥 10 

 

From here we first find 𝑣 = 𝑥, 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑢 = 
𝑥

 
10 

+ 𝐶. This means that the 

general solution to the differential equation is 

𝑥2 

𝑦 = + 𝐶𝑥 
10 

and condition (7) gives 𝐶 = 0. Particular solution 
 

𝑦 = 
𝑥2 

 
 

10 

But then 𝑦(2) = 0,4. The absolute error of the value 𝑦(2) = 0,39, found by 

the Euler–Cauchy method, is equal to 0,01, and the relative error 
 

𝛿 = 
0,0
1 

 
 

0,4 

= 0,025 = 2,5% 

 
3) In the examples considered, exact solutions of differential equations could be 

found. Let us now consider the Riccati equation 

 

𝑦′ = 𝑥 − 𝑦2 

 
which is not even integrated in quadratures. Let 𝑦 = 𝑦(𝑥) be that particular 

solution for which 𝑦(1) = 1. Let us find (1,5) using the method 
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Euler - Cauchy, dividing the segment [1, 
3
] by points 1, 

2 

1
 1  

, 1 
2 , 1 

3
 , 1 

4
 , 1 

5
 into 5 parts. The results are visible from the table. 

10 10 10 10 10 

 

X at y′ ∆у 
1 1 0 0 

1,1 1 0,1 0,01 

1,2 1,01 0,18 0,018 

1,3 1,028 0,24 0,024 

1,4 1,052 0,30 0,030 

1,5 1,082   

So, 𝑦(1,5) = 1,082. Actually 𝑦(1,5) = 1,091…. The absolute error of 

the found value of the equation is 0,009, and the relative 

 

𝛿 = 
0,00
9 

 
 

1,09
1 

< 0,009 = 0,9% 

 
The error in formula (3) occurs from the substitution. If ∆у 𝑜𝑛 у′∆х 
𝑦(𝑥0 + ∆х) apply the Taylor formula with the remainder term, we get 

 

𝑦(𝑥 + ∆𝑥) = 𝑦(𝑥 ) ′( ) 
1  ( )( )2 

0 0 + 𝑦 𝑥0 ∆𝑥 + 𝑦′′ 2 �̅� ∆𝑥 
where х̅ lies between х0 𝑎𝑛𝑑 х0 + ∆х. Hence, assuming 

 

𝑦(𝑥0 + ∆𝑥) − 𝑦(𝑥0) = ∆𝑦 
we find 

∆𝑦 − 𝑦′(𝑥0 )∆𝑥 = 
1 

𝑦′′(�̅�)(∆𝑥)2 
2 

This difference is of the order of magnitude (∆𝑥)2. The error of formula (3) 

decreases ∆х and n decreases approximately 𝑛2 once. The total error will decrease 

n times. An increase in the number of intermediate points entails a decrease in the 

total error. If then 𝑛 → ∞, the total error tends to zero 

 

Try to decide for yourself [3] 

 

1. Using the Euler–Koshin method у|х=0,4 

Segment [0; 0,4] split into 4 equal parts. 

, find if у = 
2ху

 
х2+1 

𝑎𝑛𝑑 у|х=0 =1. 
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Answer.1,12 

2. Find the relative error of solving the previous problem. 

Answer: 3,4% 

 

3. Using the Euler–Koshin method у|х=1,4 , find if 𝑦′ = 
2у 

+ х2, 
х 

у|х=1 = 1. Segment [1; 1,4] split into 4 equal parts. 

 

Answer: 2,57 

 

4. Find the relative error of solving the previous problem. 

Answer: 6,2% 

 

5. Using the Euler–Koshin method у|х=2,4 , find if 𝑦′ = 
2х+у2−5

, 
2 

у|х=2 = 1. Segment [2; 2,4] split into 4 equal parts. 

 

Answer: 1,06 

 

6. Solve the same problem by breaking [2; 2,4] into 8 equal parts. 

 

Answer: 1,077 

 

 

 

11 - §. Euler method 

 

Let a differential equation be given [2] 

 

 

with the initial condition 

𝑦′ = 𝑓(𝑥, 𝑦) (1) 

 

𝑦(𝑥0) = 𝑦0 

 
By choosing a small enough steph, let's build a system of equally spaced 

points 
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𝑖 

𝑥𝑖 = 𝑥0 + 𝑖ℎ (𝑖 = 0,1,2, … . ) (2) 

The required integral curve 𝑦 = 𝑦(𝑥), passing through the point 

𝑀0(𝑥0, 𝑦0), let us approximately replace (Fig. 1) the broken line 𝑀0𝑀1𝑀2 ...... , 

[3],[4] 

the tops of the 𝑀𝑖(𝑥𝑖, 𝑦𝑖) (𝑖 = 0,1,2, … ), links which are 𝑀𝑖𝑀𝑖+1 straight 

between straight lines 𝑥 = 𝑥𝑖, 𝑥 = 𝑥𝑖+1 and have a rise 
𝑦𝑖+1−𝑦𝑖 = 𝑓(𝑥 , 𝑦 ) (3) 

ℎ 

(the so-called Euler's polygon). 

𝑖 𝑖 

The links 𝑀𝑖𝑀𝑖+1 of the Euler manifold at each 𝑀𝑖 vertex have a 

direction coinciding with the direction 𝑦′ = 𝑓(𝑥𝑖, 𝑦𝑖 ) of the integral curve of 

equation (1) passing through the point 𝑀𝑖. 

From formula (3) it follows that the у𝑖 values can be determined (Euler’s 

method) using the formulas 

у𝑖+1 = 𝑦𝑖 + ∆𝑦𝑖 

 
and 

∆𝑦𝑖 = ℎ𝑓(𝑥𝑖, 𝑦𝑖) (𝑖 = 0,1,2, … ) (4) 

 
For the geometric construction of the Euler polygon, we choose the pole 𝑃(−1, 0) 
and on the ordinate axis we plot the segment 𝑂𝐴0 = 𝑓(𝑥0, 𝑦0) 

(Fig. 2). 

The angular coefficient of the beam 𝑃𝐴0 will be equal to 𝑓(𝑥0, 𝑦0); to 

obtain the first link of Euler's broken line, it is enough to draw a straight line 𝑀0𝑀1 
from point 𝑀0, parallel to the ray 𝑃𝐴0, until it intersects with the straight line 𝑥 = 
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𝑥1 at some point 𝑀0(𝑥0, 𝑦0). Taking point 𝑀1(𝑥1, 𝑦1) as the initial one, we lay off 

the segment 𝑂𝐴1 = 𝑓(𝑥1, 𝑦1) on the ordinate axis and through point 𝑀1 we draw a 

line 𝑀1𝑀2‖ОА1 until it intersects at point 𝑀2 straight line 𝑥 = 𝑥2 etc. 

Euler's method is the simplest numerical method for integrating a differential 

equation. Disadvantages: 

1) low accuracy; 

2) systematic accumulation of errors. 
 

 

If the right-hand side 𝑓(𝑥, 𝑦) of equation (1) is continuous, then the 

sequence of Euler broken ℎ → 0 lines for [𝑥0, 𝑥0 + 𝐻] a sufficiently small 

intervaluniformly tends to the pussy integral curve 𝑦 = 𝑦(𝑥). 
Example. Using Euler’s method, compile a table of values of the integral of 

the differential equation on the interval [0; 1] 
 

у′ = 
ху 

2 
(5) 

 

satisfying the initial condition 𝑦(0) = 1, choosing step ℎ = 0,1. 

Solution. The calculation results are presented in the table. For comparison, 

the last column of the chain contains the values of the exact solution 
1
𝑥2 

𝑦 = 𝑒4 (6) 

 

Integrating differential equation (5) using the Euler method 

 

i x y f(𝑥, 𝑦) = 
𝑥𝑦

 
2 ∆𝑦 = 0,1𝑓(𝑥, 𝑦) Exact value 
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     𝑦 = 𝑒
1

𝑥2

 
4 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 
1,0 

1 

1 

1,005 

1,0151 

1,0303 

1,0509 

1,0772 

1,1095 

1,1483 

1,1942 
1,2479 

0 

0,05 

0,1005 

0,1523 

0,2067 

0,2627 

0,3232 

0,3883 

0,4593 

0,5374 

0 

0,005 

0,0101 

0,0152 

0,0206 

0,0263 

0,0323 

0,0388 

0,0459 

0,0537 

1 

1,0025 

1,0100 

1,0227 

1,0408 

1,0645 

1,0942 

1,1303 

1,1735 

1,2244 
1,2840 

 

From the table above it is clear that the absolute error of the value 𝑦10 is 
𝜀10= 0,0361. Hence the relative error is approximately 3%. 

For comparison, we present a graph of the exact solution (highlighted with a 

thick line) and the corresponding Euler polyline 𝑀0𝑀1𝑀2... (Fig. 2). 

Euler's method has low accuracy and produces relatively satisfactory results 

only for small values of h. Essentially, Euler’s method consists in the fact that the 

integral of the differential equation (1) on each partial interval [ 𝑥𝑖, 𝑥𝑖+1] is 

represented by two terms of the Taylor series 

 

𝑦(𝑥𝑖 + ℎ) = 𝑦(𝑥𝑖) + ℎ𝑦′(𝑥𝑖) (𝑖 = 0,1,2, … ) 

 
that is, for this segment there is an error of the order of ℎ2. 

When calculating the values in the next segment, the original data are not 

accurate and contain errors that depend on the inaccuracy of the previous 

calculations. 

 

 

 

 

Examples for self-solution 

 

1. Find an approximate solution of the equation 𝑦′ = 𝑦 + 𝑥 on the segment 

[0, 1], satisfying the initial conditions 𝑥0 = 0, 𝑦0 = 1 and calculate 𝑦 at 

𝑥 = 1. 
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2. Using the Euler method, compile a table of approximate eigenvalues of this 

equation  𝑦′ = 0,5𝑥𝑦, satisfying the initial condition 𝑦 (0) = 1 with step ℎ = 

0,1 on the interval [0, 1]. 

3. Using the Euler method, find three values of the function 𝑦, defined by the 

equation 𝑦′ = 1 + 𝑥 + 𝑦2, under the initial condition 𝑦 (0) = 1, assuming ℎ = 0,1. 

 
4. Using the Euler method, find four values of the function y, defined by the 

equation  𝑦′ = 𝑥2 + 𝑦2, with the initial condition 𝑦(0) = 0, assuming ℎ = 0,1. 

5. Using the Euler method, find a numerical solution to the equation 𝑦′ = 𝑦2 + 
у
 

х 

with the initial condition 𝑦 (2) = 4, assuming ℎ = 0,1 (four values). 

 

Answers.1) 

 

x 0 0,1 0,2 0,3 0,4 

y 1 1,1 1,22 1,36 1,52 
 

 

𝑥2 1 

2) 𝑦 = 1,2840 = 𝑒 4 ,  fromthis 𝑦(1) = 𝑒4 

 
3) 

x 0,1 0,2 0,3 0,4 

y 1 1,2 1,45 1,78 

4) 
 

x 0,1 0,2 0,3 0,4 

y 0 0,001 0,005 0,014 

5 

5) 
 

x 2 2,1 2,2 2,3 2,4 

y 4 5,8 9,44 18,78 54,86 

13- §. Systems of ordinary 

differential equations 

 

When solving many problems, it is necessary to find the functions 
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𝑦1 = 𝑦1(𝑥), 𝑦2 = 𝑦2(𝑥), … , 𝑦𝑛 = 𝑦𝑛(𝑥) , which satisfy a system of differential 

equations containing arguments, the desired functions 𝑦1, 𝑦2, … , 𝑦𝑛 and their 

derivatives. [1] 

Consider the system of first-order equations 

 𝑑𝑦1 = 𝑓 ( 𝑥, 𝑦 , 𝑦 , … , 𝑦 ) 
𝑑𝑥 1 1 2 𝑛 
𝑑𝑦2 = 𝑓 (𝑥, 𝑦 , 𝑦 , … , 𝑦 ) (1) 
𝑑𝑥 2 1 2 𝑛 

… … … … … … … … … … . 𝑑𝑦𝑛 = 𝑓 (𝑥, 𝑦 , 𝑦 , … , 𝑦 ) 
{ 𝑑𝑥 𝑛 1 2 𝑛 

 
where 𝑦1, 𝑦2, … , 𝑦𝑛 − are the required functions, 𝑥- is the argument. 

Such a system, when the left side of the equations contains first-order 

derivatives, and the right sides do not contain derivatives, is called normal. 

To integrate a system means to determine functions 𝑦1, 𝑦2, … , 𝑦𝑛 that 

satisfy the system of equations (1) given initial conditions 

у1|х=х
0 

= у10, у2|х=х
0 

= у20,..., у𝑛|х=х
0 

= у𝑛0 (2) 

Integration of a system of type (1) can be done as follows. 

Let us differentiate with respect to the first equation (1): 

 

𝑑2𝑦1 𝜕𝑓
1 

𝜕𝑓1 𝑑𝑦 𝜕𝑓1 𝑑𝑦𝑛 

𝑑𝑥2 
=

 
+ 

𝜕𝑥 𝜕𝑦1 
+ ⋯ + 

𝑑𝑥 𝜕𝑦𝑛 𝑑𝑥 
 

Replacing their derivatives 𝑑у1 , 
𝑑у2 , … , 

𝑑у𝑛
 with expressions 𝑓 , 𝑓 , … , 𝑓 

𝑑𝑥 𝑑𝑥 𝑑𝑥 1 2 𝑛 

from equations (1), we will have the equation 

 
𝑑2𝑦1 

𝑑𝑥2 = 𝐹2(𝑥, 𝑦1, … , 𝑦𝑛) 

Differentiating the resulting equation and proceeding similarly to the 

previous one, we find 

𝑑3𝑦1 

𝑑𝑥3 = 𝐹3(𝑥, 𝑦1, … , 𝑦𝑛) 

Continuing further, in the same way we finally obtain the equation 
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𝑑𝑛𝑦1 

𝑑𝑥𝑛 = 𝐹𝑛(𝑥, 𝑦1, … , 𝑦𝑛) 

So we get the following system: 

 𝑑𝑦1 = 𝑓 ( 𝑥, 𝑦 , 𝑦 , … , 𝑦 ) 
𝑑𝑥 1 1 2 𝑛 
𝑑2𝑦1 = 𝐹 (𝑥, 𝑦 , 𝑦 , … , 𝑦 ) 
𝑑𝑥2 2 1 2 𝑛 (3) 

… … … … … … … … … . . 𝑑𝑛𝑦1 = 𝐹 (𝑥, 𝑦 , 𝑦 , … , 𝑦 ) 
{ 𝑑𝑥𝑛 𝑛 1 2 𝑛 

 
From the first 𝑛 − 1 equations we define 𝑦2, 𝑦3, … , 𝑦𝑛, express them 

2 𝑛−1 
through 𝑥, 𝑦 and derivatives 𝑑𝑦1 , 

𝑑 𝑦1 , … , 
𝑑 𝑦1

 (it is assumed that these 
1 

operations are feasible): 
𝑑𝑥 

 

𝑑𝑥2 

 

𝑑𝑥𝑛−1 

𝑦 = 𝜑 ( 𝑥, 𝑦 , 𝑦′, … , 𝑦(𝑛−1)) 
2 2 1 1 1 

 
𝑦 = 𝜑 ( 𝑥, 𝑦 , 𝑦′, … , 𝑦(𝑛−1)) 
3 3 1 1 1 

……………………………. 
𝑦 = 𝜑 ( 𝑥, 𝑦 , 𝑦′, … , 𝑦(𝑛−1)) 

𝑛 𝑛 1 1 1 

 
Substituting these expressions into the last of equations (3), we obtain an n 

th order equation for determining 𝑦1 
 

𝑑𝑛𝑦1 = Ф(𝑥, 𝑦 , у′ , … , 𝑦(𝑛−1)) (5) 
𝑑𝑥𝑛 1 1 1 

 
Solving this equation, we determine 𝑦1: 

 

𝑦1 = 𝜓1( х, 𝐶1, 𝐶2, … , С𝑛) 

 
Differentiating the last expression 𝑛 − 1 times, we find 
𝑑𝑦1 , 

𝑑2𝑦1 , … , 
𝑑𝑛−1𝑦1 the  derivativesas  functions from 𝑥, 𝐶 , 𝐶 , … , 𝐶 . 

𝑑𝑥 
 

𝑑𝑥2 

 

𝑑𝑥𝑛−1 1 2 𝑛 

Substituting these functions into equation (4), defined by 𝑦2, 𝑦3, … , 𝑦𝑛: 

 

𝑦2 = 𝜓2( х, 𝐶1, 𝐶2, … , С𝑛) 
………………………. (7) 

𝑦𝑛 = 𝜓𝑛( х, 𝐶1, 𝐶2, … , С𝑛) 
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In order for the resulting solution to satisfy the given initial conditions (2), 

all that remains is to find from equations (6) and (7) the corresponding values of 

the constants  𝐶1, 𝐶2, … , С𝑛. 

 

Example 1. Integrate the system 

 
𝑑𝑦 = 𝑦 + 𝑧 + 𝑥, 𝑑𝑧 = −4𝑦 − 3𝑧 + 2𝑥 (a) 
𝑑𝑥 𝑑𝑥 

 

initial conditions  

у|х=0 = 1, 𝑧|𝑥=0 = 0 (b) 

 

Solution.1) Differentiating with respect to the first equation, we will have 

 

𝑑2𝑦 

𝑑𝑥2 
=

 

𝑑𝑦 
+ 

𝑑𝑥 

𝑑𝑧 
+ 1 

𝑑𝑥 
 

Substituting expressions from 𝑑 
𝑑𝑥 

𝑎𝑛𝑑 
𝑑𝑧
 

𝑑𝑥 
equations (a) here, we get 

 
𝑑2𝑦 

𝑑𝑥2 = ( 𝑦 + 𝑧 + 𝑥) + (−4𝑦 − 3𝑧 + 2𝑥) + 1 

or 
𝑑2𝑦 

 

𝑑𝑥2 
= −3у − 2𝑧 + 3𝑥 + 1 (c) 

 

2) From the first equation of the system (a) we find 

 

𝑧 = 
𝑑𝑦 

− 𝑦 − 𝑥 (d) 
𝑑𝑥 

and substitute into the equation we just obtained; we get 

 

𝑑2𝑦 𝑑𝑦 

𝑑𝑥2 = −3у − 2( 
𝑑𝑥 

− у − х) + 3𝑥 + 1 

or 
𝑑2𝑦 

+ 2 
𝑑𝑦 

+ у = 5х + 1 (e) 
𝑑𝑥2 𝑑𝑥 

The general solution to the last equation is 

 

y = (𝐶1 + 𝐶2𝑥)𝑒−𝑥 + 5x – 9 (f) 
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on the basis (d)  

𝑧 = (𝐶2 − 2𝐶1 − 2𝐶2𝑥)𝑒−𝑥 − 6𝑥 + 14 (g) 

 

Let us select the constants 𝐶1 and 𝐶2 so that the initial conditions (b) are 

satisfied: у|х=0 = 1, 𝑧|𝑥=0 = 0. Then from equalities (f) and (g) we obtain 

 

1 = 𝐶1 − 9 , 0 = 𝐶2 − 2𝐶1 + 14 

 
whence 𝐶1 = 10,  𝐶2 = 6. Thus, the solution satisfying the given initial conditions 

(b) has the form 

 

𝑦 = (10 + 6𝑥)𝑒−𝑥 + 5𝑥 – 9, 𝑧 = (−14 – 12𝑥)𝑒−𝑥 – 6𝑥 + 14 

 
Example 2.Integrate the system 

 

𝑑𝑥 
 

 

𝑑𝑡 
= 𝑦 + 𝑧, 

𝑑
𝑦 

 
 

𝑑𝑡 

= 𝑥 + 𝑧, 
𝑑
𝑧 

 
 

𝑑
𝑡 

= 𝑥 + 𝑦 

Solution. Differentiating bytthe first equation, we find 

 

𝑑2𝑥 𝑑
𝑦 

𝑑𝑧 𝑑2𝑥 

𝑑𝑡2 = 
𝑑𝑡 

+ 
𝑑𝑡 

= (𝑥 + 𝑧) + (𝑥 + 𝑦), 
𝑑𝑡2 = 2𝑥 + 𝑦 + 𝑧 

Excluding variables 𝑦 and 𝑧 from equations 

 
𝑑𝑥 = 𝑦 + 𝑧, 

𝑑2𝑥 
= 2𝑥 +y+z 

𝑑𝑡 𝑑𝑡2 

we will have a second-order equation with respect tox 

 

𝑑2𝑥 

𝑑𝑡2 
−

 

𝑑𝑥 
− 2х = 0 

𝑑𝑡 

Integrating this equation, we obtain its general solution 

 

from here we find 

𝑥 = 𝐶1𝑒−𝑡 + 𝐶2𝑒2𝑡(𝛼) 

𝑑𝑥 = −𝐶 𝑒−𝑡 + 2𝐶 𝑒2𝑡 and 𝑦 = 
𝑑х 

− 𝑧 = − 𝐶 𝑒−𝑡 + 2𝐶 𝑒2𝑡 (𝛽) 
𝑑𝑡 1 2 𝑑𝑡 1 2 
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Substituting the found expressions for 𝑥 and 𝑦 into the third of the given 

equations, we obtain the equation for determining 𝑧 
 

𝑑𝑧 + 𝑧 = 3𝐶 𝑒2𝑡 
 

𝑑𝑡 2 

Integrating this equation, we find 

 

𝑧 = 𝐶1𝑒−𝑡 + 𝐶2𝑒2𝑡 (𝛾) 

but then based on the equations we get (𝛽 ) 

𝑦 = −(𝐶1 + 𝐶2)𝑒−𝑡 + 𝐶2𝑒2𝑡 (𝛿) 

 

Equations (𝛼), (𝛽) 𝑎𝑛𝑑 (𝛾)  give a general solution to a given system. 

 

The differential equations of the system may include derivatives of higher 

orders. In this case, a system of higher order differential equations is obtained. 

So, for example, the problem of the movement of a material point under the 

influence of force F is reduced to a system of three-differential equations of the 

second order. Let 𝐹𝑥, 𝐹𝑦, 𝐹𝑧 be the projections of force F onto the coordinate axis. 

The position of a point at any time t is determined by its x, y, z coordinates. 

Therefore, 𝑥, 𝑦, 𝑧 are functions of t. The projections of the velocity vector of the 

point on the coordinate axis will be  𝑑𝑥 , 
𝑑𝑦 

, 
𝑑𝑧 

. 
𝑑𝑡  𝑑𝑡  𝑑𝑡 

Let us assume that the force F, and therefore its projections 𝐹𝑥, 𝐹𝑦, 𝐹𝑧 , 
depend on the timet, positions 𝑥, 𝑦, 𝑧 of the point and on the speed of movement 

of the point, that is, on 𝑑𝑥 , 
𝑑𝑦 

, 
𝑑𝑧 

. 
𝑑𝑡  𝑑𝑡  𝑑𝑡 

The functions sought in this problem are three functions 

 

𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡). 

 
These functions are determined from the equations of dynamics (Newton's law) 

𝑑2𝑥 
𝑚 

𝑑𝑡2 = 𝐹𝑥(𝑡, 𝑥, 𝑦, 𝑧, 
𝑑𝑥 

 
 

𝑑𝑡 

𝑑
𝑦 

, 
𝑑𝑡 

𝑑𝑧 
, ) 
𝑑𝑡 

𝑚 
𝑑2𝑦 

= 𝐹 (𝑡, 𝑥, 𝑦, 𝑧, 
𝑑𝑥 

, 
𝑑𝑦 

, 
𝑑𝑧 

) (8) 
𝑑𝑡2 𝑦 

 

𝑑𝑡 
 

𝑑
𝑡 

 

𝑑𝑡 
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𝑑2𝑧 
𝑚 

𝑑𝑡2 = 𝐹𝑧(𝑡, 𝑥, 𝑦, 𝑧, 
𝑑𝑥 

 
 

𝑑𝑡 

𝑑
𝑦 

, 
𝑑𝑡 

𝑑𝑧 
, ) 
𝑑𝑡 

We obtained a system of three - differential equations of the second order. In 

the case of plane motion, that is, motion when the trajectory is a plane curve (lying, 

for example, in the 𝑂𝑥𝑦 plane), we obtain a system of two equations for 

determining the functions 𝑥(𝑡) and 𝑦(𝑡): 

𝑚 
𝑑2𝑥 

= 𝐹 (𝑡, 𝑥, 𝑦 , 
𝑑𝑥 

, 
𝑑𝑦 

) (9) 
𝑑𝑡2 𝑥 

 

𝑑𝑡 
 

𝑑𝑡 

𝑚 
𝑑2𝑦 

= 𝐹 (𝑡, 𝑥, 𝑦, 
𝑑𝑥 

, 
𝑑𝑦 

) (10) 
𝑑𝑡2 𝑦 

 

𝑑𝑡 
 

𝑑𝑡 

 
It is possible to solve a system of higher - order differential equations by 

reducing it to a system of first - order equations. Using equations (9) and (10) as an 

example, we will show how this is done. Let us introduce the notation 

 

 

Then 

𝑑𝑥 
 

 

𝑑𝑡 
= 𝑢, 

𝑑
𝑦 

 
 

𝑑𝑡 

= 𝑣 

𝑑2𝑥 

𝑑𝑡2 
=

 

𝑑𝑢 
, 

𝑑𝑡 

𝑑2𝑦 

𝑑𝑡2 
=

 

𝑑𝑣 
 

 

𝑑𝑡 

The system of two second-order equations (9), (10) with two desired 

functions 𝑥 (𝑡) and 𝑦(𝑡) is replaced by a system of four first-order equations with 

four desired functions 𝑥, 𝑦, 𝑢, 𝑣 
𝑑𝑥 

 
 

𝑑𝑡 
= 𝑢, 

𝑑
𝑦 

 
 

𝑑𝑡 

= 𝑣 

𝑚 
𝑑𝑢 

= 𝐹 (𝑡, 𝑥, 𝑦 , 𝑢, 𝑣), 𝑚 
𝑑𝑣 

= 𝐹 (𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ). 
𝑑𝑡 𝑥 𝑑𝑡 𝑦 

Let us note in conclusion that the general method of solving the system that 

we have considered can, in some specific cases, be replaced by one or another 

artificial example that will more quickly lead to the goal. 

Example 3.Find a general solution to a system of differential equations 
𝑑2𝑦 

= 𝑧, 
𝑑2𝑧 

= 𝑦. 
𝑑𝑥2 𝑑𝑥2 

Solution. Let us differentiate by two times both sides of the first equation: 

𝑑4𝑦 

𝑑𝑥4 
=

 

𝑑2𝑧 
 

 

𝑑𝑥2 
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But 𝑑
2𝑧 

= 𝑦, therefore, we get a fourth - order equation 𝑑
4у 

= 𝑦. Integrating 
𝑑𝑥2 

this equation, we obtain its general solution 

 

𝑦 = С1ех + С2е−х + С3𝑐𝑜𝑠𝑥 + С4𝑠𝑖𝑛𝑥 

𝑑𝑥4 

Finding from here 𝑑
2

 
𝑑𝑥2 

and substituting into the first equation, we find 𝑧: 

 
𝑧 = С1ех + С2е−х − С3𝑐𝑜𝑠𝑥 − С4𝑠𝑖𝑛𝑥. 

 

Try to decide for yourself [3]

1. Solve a system of differential equations 
𝑑𝑥 

= 𝑥 + 𝑦, 
𝑑𝑡 

 
𝑑
𝑦 

 
 

𝑑𝑡 

 
= 𝑥 − 𝑦 

initial conditions 𝑥 (0) = 2, 𝑦 (0) = 0. 
2. Solve a system of differential equations 

𝑑𝑥 
 

 

𝑑𝑡 

х 
= , 

2х + 3у 

𝑑𝑦 
= 

𝑑𝑡 

у 
 

 

2х + 3у 

 
initial conditions 𝑥 (0) = 1,  𝑦 (0) = 2. 

3. Solve a system of differential equations 

𝑑𝑥 
 

 

𝑑𝑡 
= 2у, 

𝑑
𝑦 

 
 

𝑑𝑡 

= 2𝑧, 
𝑑
𝑧 

 
 

𝑑
𝑡 

= 2𝑥 

4. Solve a system of differential equations 

𝑑𝑥 
 

 

𝑑𝑡 
= 2𝑥 + у, 

𝑑
𝑦 

 
 

𝑑𝑡 

= 𝑥 + 2𝑦;  𝑥(0) = 1, 𝑦(0) = 3. 

Answers. 

1) 𝑥 = (
√2 

+ 1) 𝑒𝑡√2 + (1 − 
√2

) 𝑒−𝑡√2, 𝑦 = 
√2 

𝑒𝑡√2 − 
√2 

𝑒−𝑡√2 

2) 𝑥 = 

2 

1 𝑡 + 1, 𝑦 = 
8 

2 2 2 

1 𝑡 + 2 
4 

 

1  𝑑𝑦 3) 𝑧 =  ∙ = 𝐶 𝑒2𝑡 

1 
−𝑡[(𝐶 √3 + 𝐶 )𝑐𝑜𝑠𝑡√3 − (𝐶 √3 − 𝐶 )𝑠𝑖𝑛𝑡√3] 

 
 

2  𝑑𝑥 
1 −  𝑒 3 2 2 3 

2 

4)𝑥 = 2𝑒3𝑡 − 𝑒𝑡, 𝑦 = 2𝑒3𝑡 + 𝑒𝑡 
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14 - §. Systems of linear differential equations with constant coefficients 

 

Let us have a system of differential equations 

 

𝑑𝑥1 = 𝑎
 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 

𝑑𝑡

 1
1 

𝑑𝑥2 = 𝑎
 

𝑑𝑡 

1
 1
2 

𝑥1 + 𝑎22 

2 1𝑛  𝑛 

𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 
 

(1) 

… … … … … … … … … … … … … … … . 
𝑑𝑥𝑛 = 𝑎

 
𝑑𝑡 𝑛1 𝑥1 + 𝑎 𝑛2 𝑥2 + ⋯ + 𝑎 𝑛𝑛 𝑥𝑛 

 
where the coefficients  𝑎𝑖𝑗  are constant. Here t is the argument 𝑥1(𝑡), 𝑥2(𝑡), ..., 

𝑥𝑛(𝑡) are the required functions. System (1) is called a system of linear 

homogeneous differential equations with constant coefficients. [9]. 

We will look for a particular solution of the system in the following form: 

 

𝑥1 = 𝛼1𝑒𝑘𝑡 , 𝑥2 = 𝛼2𝑒𝑘𝑡, …, 𝑥𝑛 = 𝛼𝑛𝑒𝑘𝑡 (2) 

 

It is required to define the constants 𝛼1, 𝛼2, … , 𝛼𝑛 and k so that the 

functions 𝛼1𝑒𝑘𝑡 , 𝛼2𝑒𝑘𝑡, … , 𝛼𝑛𝑒𝑘𝑡 satisfied the system of equations (1). 

Substituting them into system (1), we get 

 

𝑘𝛼1𝑒𝑘𝑡 = (𝑎11𝛼1+𝑎12𝛼2 + ⋯ + 𝑎1𝑛𝛼𝑛)𝑒𝑘𝑡 

 
𝑘𝛼2𝑒𝑘𝑡 = (𝑎21𝛼1+𝑎22𝛼2 + ⋯ + 𝑎2𝑛𝛼𝑛)𝑒𝑘𝑡 
………………………………………….. 

𝑘𝛼𝑛𝑒𝑘𝑡 = (𝑎𝑛1𝛼1 + 𝑎𝑛2𝛼2 + ⋯ + 𝑎𝑛𝑛𝛼𝑛)𝑒𝑘𝑡k 

 

We reduce 𝑒𝑘𝑡. By transferring all terms to one side and collecting the 

coefficients at 𝛼1, 𝛼2, … , 𝛼𝑛, we obtain a system of equations. 

(𝑎11−𝑘)𝛼1 + 𝑎12𝛼2 + ⋯ + 𝑎1𝑛𝛼𝑛 = 0 
 

𝑎21𝛼1 + (𝑎22 − 𝑘)𝛼2 + ⋯ + 𝑎2𝑛𝛼𝑛 = 0 (3) 

………………………………………… 

𝑎𝑛1𝛼1 + 𝑎𝑛2𝛼2 + ⋯ + (𝑎𝑛𝑛−𝑘)𝛼𝑛 = 0 

 
Let us choose 𝛼1, 𝛼2, … , 𝛼𝑛 and 𝑘 such that system (3) is satisfied. This 

system is a system of linear homogeneous algebraic equations with respect 

to 𝛼1, 𝛼2, … , 𝛼𝑛. Let's compose the determinant of the system (3): 

{ 

2
1 
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𝑎11 − 𝑘 𝑎12 … 𝑎1𝑛 

∆(𝑘) = | 
𝑎21 𝑎22 − 𝑘 … 𝑎2𝑛| (4)

 
… . … . . … 

𝑎𝑛1𝑎𝑛2 … 𝑎𝑛𝑛 − 𝑘 

 
If k is such that the determinant∆is nonzero, then system (3) has only zero 

solutions 𝛼1 = 𝛼2 = … = 𝛼𝑛 = 0, and therefore formulas (2) give only trivial 

solutions 

𝑥1(𝑡) = 𝑥2(𝑡) = ⋯ 𝑥𝑛(𝑡) ≡ 0 

Thus, we will obtain nontrivial solutions (2) only if 𝑘 for which the 

determinant (4) becomes zero. We arrive at the nth order equation to determine 𝑘: 
𝑎11 − 𝑘 𝑎12 … 𝑎1𝑛 

| 
𝑎21 𝑎22 − 𝑘 … 𝑎2𝑛| = 0 (5) 
… . … . . … 
𝑎𝑛1𝑎𝑛2 … 𝑎𝑛𝑛 − 𝑘 

 
This equation is called the characteristic equation for system (1), its roots are 

called the roots of the characteristic equation. 

Let's consider several cases. 

I. The roots of the characteristic equation are real and distinct. 

Let us denote by the  𝑘1, 𝑘2, … , 𝑘𝑛 roots of the characteristic equation. For 

each root 𝑘𝑖 , we write system  (3) and determine the coefficients 
𝛼(𝑖), 𝛼(𝑖), … , 𝛼(𝑖) . It can be shown that one of them is arbitrary and can be 

1 2 𝑛 

considered equal to medicine. Thus, we obtain: for the root 𝑘1 solution of system 

(1) 

 
𝑥

(1) 
= 𝛼

(1)
𝑒𝑘1𝑡,  𝑥

(1) 
= 𝛼

(1)
𝑒𝑘1𝑡, … , 𝑥

(1) 
= 𝛼

(1)
𝑒𝑘1𝑡 ;

 
1 1 2 2 𝑛 𝑛 

for root 𝑘2 solution of system (1) 

 
𝑥

(2) 
= 𝛼

(2)
𝑒𝑘2𝑡, 𝑥

(2) 
= 𝛼

(2)
𝑒𝑘2𝑡, … , 𝑥

(2) 
= 𝛼

(2)
𝑒𝑘2𝑡;

 
1 1 2 2 𝑛 𝑛 

… … … … … … … … … … … … … … …. 

for the root 𝑘𝑛 solution of the system (1) 

 
𝑥(𝑛) = 𝛼(𝑛)𝑒𝑘𝑛𝑡,  𝑥(𝑛) = 𝛼(𝑛)𝑒𝑘𝑛𝑡, … , 𝑥(𝑛) = 𝛼(𝑛)𝑒𝑘𝑛𝑡. 1 1 2 2 𝑛 𝑛 

By direct substitution into the equations, one can verify that the system of 

functions 
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х = С 𝛼
(1)

𝑒𝑘1𝑡 + С 𝛼(2)𝑒𝑘2𝑡 + ⋯ + 𝐶 𝛼(𝑛)𝑒𝑘𝑛𝑡 
1 1  1 2  1 𝑛  1 

𝑥 = 𝐶 𝛼(1)𝑒𝑘1𝑡 + 𝐶 𝛼(2)𝑒𝑘2𝑡 + ⋯ + 𝐶 𝛼(𝑛)𝑒𝑘𝑛𝑡 

2 1  2 2  2 𝑛  2 (6) 
… … … … … … … … … … … … … … … … … 

{𝑥 = 𝐶 𝛼
(1)

𝑒𝑘1𝑡 + 𝐶 𝛼(2)𝑒𝑘2𝑡 + ⋯ + 𝐶 𝛼(𝑛)𝑒𝑘𝑛𝑡 
𝑛 1  𝑛 2  𝑛 𝑛  𝑛 

 
where 𝐶1, 𝐶2, … , 𝐶𝑛 − are arbitrary constants, is also a solution to the system of 

differential equations (1). This is the general solution of system (1). It is easy to 

show that it is possible to find values of the constants at which the solution will 

satisfy the given initial conditions. 

Example 1. Find a general solution to the system of equations 
𝑑𝑥1 = 2𝑥 + 2𝑥 , 𝑑𝑥2 = 𝑥 + 3𝑥 
𝑑𝑡 1 2 𝑑𝑡 1 2 

 
Solution. Making up a characteristic equation 

 

2 − 𝑘 2 
| 

1 3 − 𝑘 
|= 0 

or 𝑘2 − 5𝑘 + 4 = 0 . We find its roots 𝑘1 = 1, 𝑘2 = 4. We look for a solution to 

the system in the form 

𝑥(1) = 𝛼(1)𝑒𝑡, 𝑥(1) = 𝛼(1)𝑒𝑡 
1 1 2 2 

 

𝑥(2) = 𝛼(2)𝑒4𝑡, 𝑥(2) = 𝛼(2)𝑒4𝑡 
1 1 2 2 

 
We compose system (3) for the root 𝑘 = 1 and determine 𝛼(1) 𝑎𝑛𝑑 𝛼(1); 

1 1 2 
(2 − 1)1𝛼(1) + 2𝛼(1) = 0, 𝛼(1) + (3 − 1)𝛼(1) = 0 

1 2 1 2 

or 

𝛼(1) + 2𝛼(1) = 0, 𝛼(1) + 2𝛼(1) = 0 
1 2 1 2 

 
where 𝛼(1) 1 (1) (1) (1) 1 

2 = − 
2 

𝛼1 . Assuming 𝛼1 = 1, web get 𝛼2 = −  . Thus, we 
2 

have obtained the solution of the system 

𝑥(1) = 𝑒𝑡, 𝑥(1) = −𝑒𝑡/2 
1 2 

 

We further compose system (3) for the root 𝑘 = 4 and define 𝛼(2)𝑎𝑛𝑑 𝛼(2); 
2 1 2 

 
−2𝛼(2) + 2𝛼(2) = 0, 𝛼(2) − 𝛼(2) = 0 

1 2 1 2 
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Where from 𝛼(2) = 𝛼(2) 𝑎𝑛𝑑 𝛼(2) = 1, 𝛼(2) = 1. We obtain the second solution 
1 2 1 2 

of the system 
х

(2) 
= 𝑒4𝑡, х

(2) 
= 𝑒4𝑡 

1 2 

The general solution of the system will be 

 

𝑥1 = 𝐶1 𝑒𝑡 + 𝐶2 𝑒4𝑡, 
1 

𝑥2 = − 
2 

𝐶1𝑒 + 𝐶2𝑒 4𝑡. 

 

II. The roots of the characteristic equation are different, but among 

them there are complex ones. 

Let there be two complex conjugate roots among the roots of the characteristic 

equation: 

 

𝑘1 = 𝛼 + 𝑖𝛽, 𝑘2 = 𝛼 − 𝑖𝛽 

 
Solutions will correspond to these roots 

𝑥(1) = 𝛼(1)𝑒(𝛼+𝑖𝛽)𝑡 ( 𝑗 = 1, 2, … , 𝑛 ) (7) 
𝑗 𝑗 

 
𝑥(2) = 𝛼(2)𝑒(𝛼−𝑖𝛽)𝑡 ( 𝑗 = 1, 2, … , 𝑛 ) ( 8) 
𝑗 𝑗 

 
The coefficients 𝛼(1)𝑎𝑛𝑑 𝛼(2) are determined from the system of 

𝑗 𝑗 

equations (3). Thus, we obtain two partial solutions 

 
𝑥̅(1) = 𝑒𝛼𝑡(𝜆(1)𝑐𝑜𝑠𝛽𝑥 + 𝜆(2)𝑠𝑖𝑛𝛽𝑥) 
𝑗 𝑗 𝑗 

 
𝑥̅(2) = 𝑒𝛼𝑡(𝜆̅

(1)
𝑐𝑜𝑠𝛽𝑥 + �̅�

(2)
𝑠𝑖𝑛𝛽𝑥) (9) 

𝑗 𝑗 𝑗 

 
𝑤ℎ𝑒𝑟𝑒  𝜆(1), 𝜆(2), �̅�

(1)
, �̅�

(2) 
– real numbers defined through. The corresponding 

𝑗 𝑗 𝑗 𝑗 

combinations of functions (9) will be included in the general solution of the system 

𝛼(1)𝑎𝑛𝑑  𝛼(2). 
𝑗 𝑗 

 

 
Example 2 . Find the general solution of the system 

 
𝑑𝑥1 

= −7𝑥 + 𝑥 , 
𝑑𝑥2 

= −2𝑥 − 5𝑥 
𝑑𝑡 

 

1 2 𝑑𝑡 1 2 

𝑡 
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1 

2 

1 

Solution. Making up a characteristic equation 

 
−7 − 𝑘 1 
| 

−2 −5 − 𝑘
| = 0

 

or 𝑘2 + 12𝑘 + 37 = 0 and find its roots 

 

𝑘1 = −6 + 𝑖 , 𝑘2 = −6 − 𝑖 

 
Substituting 𝑘1 = −6 + 𝑖 into system (3), we find 

 
𝛼(1) = 1, 𝛼(1) = 1 + 𝑖 
1 2 

We write the solution (7): 

 

𝑥
(1) 

= 𝑒(−6+𝑖)𝑡 , 𝑥
(1) 

= (1 + 𝑖)𝑒(−6+𝑖)𝑡 ( 7′ ) 
1 2 

Substituting 𝑘2 = 6 − 𝑖 into system (3), we find 

 
𝛼(2) = 1, 𝛼(2) = 1 − 𝑖 
1 2 

Let's learn the second solution system (8): 

 
𝑥

(2) 
= 𝑒(−6−𝑖)𝑡,  𝑥

(2) 
= (1 − 𝑖)𝑒(−6−𝑖)𝑡 ( 8' ) 

1 2 

Let's rewrite the solution (7′): 

 
𝑥(1) = 𝑒−6𝑡(𝑐𝑜𝑠𝑡 + 𝑖𝑠𝑖𝑛𝑡) ,𝑥(1) = (1 + 𝑖)𝑒−6𝑡(𝑐𝑜𝑠𝑡 + 𝑖𝑠𝑖𝑛𝑡) 
1 2 

or 

𝑥(1) = 𝑒−6𝑡𝑐𝑜𝑠𝑡 + 𝑖𝑒−6𝑡𝑠𝑖𝑛𝑡, 

 

𝑥(1) = 𝑒−6𝑡(𝑐𝑜𝑠𝑡 − 𝑠𝑖𝑛𝑡) + 𝑖𝑒−6𝑡(𝑐𝑜𝑠𝑡 + 𝑠𝑖𝑛𝑡), 

 

Let's rewrite the solution (8′): 

 

𝑥(2) = 𝑒−6𝑡𝑐𝑜𝑠𝑡 − 𝑖𝑒−6𝑡𝑠𝑖𝑛𝑡, 
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2 𝑥(2) = 𝑒−6𝑡(𝑐𝑜𝑠𝑡 − 𝑠𝑖𝑛𝑡) − 𝑖𝑒−6𝑡(𝑐𝑜𝑠𝑡 + 𝑠𝑖𝑛𝑡) 

 
For systems of particular solutions, we can take separate real parts and 

separate imaginary parts: 

𝑥̅(1) = 𝑒−6𝑡𝑐𝑜𝑠𝑡 , 𝑥̅(1) = 𝑒−6𝑡(𝑐𝑜𝑠𝑡 − 𝑠𝑖𝑛𝑡) 
1 2 

 
𝑥̅(2) − 𝑒−6𝑡𝑠𝑖𝑛𝑡, 𝑥̅(1) = 𝑒−6𝑡(𝑐𝑜𝑠𝑡 + 𝑠𝑖𝑛𝑡) (9’) 

1 2 

The general solution of the system will be 

 

𝑥1 = С1𝑒−6𝑡𝑐𝑜𝑠𝑡 + С2𝑒−6𝑡𝑠𝑖𝑛𝑡 

 
𝑥2 = С1𝑒−6𝑡(𝑐𝑜𝑠𝑡 − 𝑠𝑖𝑛𝑡) + С2𝑒−6𝑡(𝑐𝑜𝑠𝑡 + 𝑠𝑖𝑛𝑡) 

 
Using a similar method, you can find a solution to a system of linear 

differential equations of higher order with constant coefficients. 

In the mechanics and theory of electrical circuits, for example, the solution 

of a system of second-order differential equations is studied 

 

𝑑2𝑥 
= 𝑎

 х + 𝑎 у, 𝑑
2𝑦 

= 𝑎 х + 𝑎 у (10) 
𝑑𝑡2 11 12 𝑑𝑡2 21 22 

 
Again looking for solutions in form 

𝑥 = 𝛼𝑒𝑘𝑡, 𝑦 = 𝛽𝑒𝑘𝑡 

Substituting these expressions into system (10) and reducing to 𝑒𝑘𝑡, we 

obtain a system of equations for determining 𝛼, 𝛽 𝑎𝑛𝑑 𝑘 
 

(𝑎11 − 𝑘2)𝛼 + 𝑎12𝛽 = 0, 𝑎21𝛼 + (𝑎22 − 𝑘2) = 0 (11) 

 

Non-zero values are 𝛼 𝑎𝑛𝑑 𝛽 defined only when the determinant of the 

system is equal to zero: 
𝑎11 − 𝑘2 𝑎12 
| 

𝑎2

1 

𝑎2
2 

− 𝑘2| = 0 (12) 

This is the characteristic equation for system (10); it is an equation of 4th 

order relative to 𝑘. Let 𝑘1, 𝑘2, 𝑘3 and 𝑘4 - be its roots. For each root 𝑘𝑖 from 

system (11) we find the values 𝛼 𝑎𝑛𝑑 𝛽. The general solution, similar to (6), will 

have the form 
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𝑥 = 𝐶1𝛼(1)е𝑘1𝑡 + 𝐶2𝛼(2)𝑒𝑘2𝑡 + 𝐶3𝛼(3)𝑒𝑘3𝑡 + 𝐶4𝛼(4)𝑒𝑘4𝑡 

 

𝑦 = 𝐶1𝛽(1)е𝑘1𝑡 + 𝐶2𝛽(2)𝑒𝑘2𝑡 + 𝐶3𝛽(3)𝑒𝑘3𝑡 + 𝐶4𝛽(4)𝑒𝑘4𝑡 

 

If some of the roots are complex, then each pair of complex roots in the 

general solution will correspond to expressions of the form (9). 

 

Example 3. Find a general solution to a system of differential equations 
𝑑2𝑥 

= х − 4у, 
𝑑𝑡2 

𝑑2𝑦 
= −х + у 

𝑑𝑡2 

Solution.We write the characteristic equation (12) and find its roots: 

 

|1 − 𝑘2 −4 
−1 1 − 𝑘2 

| = 0 

 
  

𝑘1 = 𝑖, 𝑘2 = −𝑖, 𝑘3 = √3, 𝑘4 = −√3 . 
 

the solution will be looked for in the form 

 

𝑥(1) = 𝛼(1)𝑒𝑖𝑡, 𝑦(1) = 𝛽(1)𝑒𝑖𝑡 

𝑥(2) = 𝛼(2)𝑒−𝑖𝑡, 𝑦(2) = 𝛽(2)𝑒−𝑖𝑡 
 

𝑥(3) = 𝛼(3)𝑒√3𝑡, 𝑦(3) = 𝛽(3)𝑒√3𝑡 
  

𝑥(4) = 𝛼(4)𝑒−√3𝑡, 𝑦(4) = 𝛽(4)𝑒−√3𝑡 

 

From system (11) we find 𝛼(𝑗) 𝑎𝑛𝑑 𝛽(𝑗) 

 
𝛼(1) = 1, 𝛽(1) = 

1 
2 

𝛼(2) = 1, 𝛽(2) = 
1 
2 

𝛼(3) = 1, 𝛽(3) = − 
1

 
2 

𝛼(4) = 1, 𝛽(4) = − 
1

 
2 

Let's write out complex solutions: 

 

𝑥(1) = 𝑒𝑖𝑡 = 𝑐𝑜𝑠𝑡 + 𝑖𝑠𝑖𝑛𝑡, 𝑦(1) = 0,5(𝑐𝑜𝑠𝑡 + 𝑖𝑠𝑖𝑛𝑡) 

𝑥(2) = 𝑒−𝑖𝑡 = 𝑐𝑜𝑠𝑡 − 𝑖𝑠𝑖𝑛𝑡, 𝑦(2) = 0,5(𝑐𝑜𝑠𝑡 − 𝑖𝑠𝑖𝑛𝑡) 
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The solution will be the real imaginary parts: 

 

𝑥̅(1)= 𝑐𝑜𝑠𝑡 , �̅�(1) = 0,5 𝑐𝑜𝑠𝑡 

�̅�(2)= 𝑠𝑖𝑛𝑡 , �̅�( 2 )  = 0,5𝑠𝑖𝑛𝑡 

 
Now we can write the general solution 

 

𝑥 = 𝐶1cost + 𝐶2 sint + 𝐶3𝑒√3𝑡 + 𝐶4𝑒−√3𝑡 
 

1 1
 1 

√3𝑡 1 −√3𝑡 

𝑦 = 
2 

𝐶1𝑐𝑜𝑠𝑡 + 
2 

𝐶2𝑠𝑖𝑛𝑡 − 
2 

𝐶3𝑒 − 
2 

𝐶4𝑒 
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III –Chapter. Laplace transform 

1-§. Laplace transform 

Laplace transform – an integral transformation connecting the function 

𝐹(𝑠) of a complex variable (image) with the function 𝑓(𝑥) of a real variable. 

With this help, the properties of dynamic systems are studied and differential 

and integral equations are solved. [6]. 

One of the features of the Laplace transform, which predetermined its wide 

distribution in scientific and engineering calculations, is that many relations and 

operations on the originals correspond to simpler relations on their images. Thus, 

the convolution of two functions is reduced in the image space of the cooperation 

of multiplication, and linear differential equations become algebraic. 

Another Laplace transform is an integral transform, which is closely related 

to the Fourier transform and has similar properties. It is very often used in 

engineering disciplines, especially electrical engineering and cybernetics. A 

complex - valued function 𝑓(𝑥) of a real variable 𝑡 is called original if it is defined 

at 𝑡 ≥ 0, integrable (0; +∞)and has exponential order: 
 

 

function 

|𝑓(𝑡)| ≤ 𝐾𝑒𝑠𝑡, 𝑠 = 𝑐𝑜𝑛𝑠𝑡 (1) 

 
+∞ 

𝐹(𝑝) = ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡 
0 

(2) 

 
where p - is a complex parameter, they call it an image (sometimes a 

transformant) of the original f(t) and write 𝐹(𝑝) = 𝐿[𝑓(𝑡)]. Integral (2) converges 

absolutely at  𝑅𝑒𝑝 > 𝑠, where 𝑠 − is the constant from (1). Therefore, the image 

𝐹(𝑝) exists in the half - plane  𝑅𝑒𝑝 > 𝑠. The image 𝐹(𝑝) in this half − plane is 

an analytic function of 𝑝, which tends to zero at 𝑅𝑒𝑝 → +∞ and remains bounded 

in any half- plane   𝑅𝑒𝑝 ≥ 𝑠0, 𝑠0 > 𝑠. 
The following nine theorems provide the basis for the wide applicability of 

the Laplace transform. The names of the theorems correspond to the operations 

that are performed on the original functions. 

 

1. Theorem of addition (linearity of transformation): 

 

𝐿[𝑎1𝑓1(𝑡) + 𝑎2𝑓2(𝑡)] = 𝑎1𝐿[𝑓1(𝑡)] + 𝑎2𝐿[𝑓2(𝑡)] 
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2. Convolution theorem: 
1 

𝐿 [∫ 𝑓1(𝑡 − 𝜏)𝑓2(𝜏)𝑑𝜏] = 𝐿[𝑓1(𝑡)]𝐿[𝑓2(𝑡)] 
0 

 
that is, the convolution in the set of originals corresponds to the usual product of 

functions in the set of images. 

3. Integration theorem: 

 

1
 
1 

𝐿 [∫ 𝑓(𝜏)𝑑𝜏] = 
0 𝑝 

𝐹(𝑝), 𝐹(𝑝) = 𝐿[𝑓] 

 
Therefore, integration in the area of the originals corresponds to the division 

of the image into an independent variable. 

4. Differentiation theorem: 

 

𝐿[𝑓(𝑛)(𝑡)] = 𝑝𝑛𝐹(𝑝) − 𝑝𝑛−1𝑓 − ⋯ − 𝑝𝑓
(𝑛−2) 

− 𝑓
(𝑛−1) 

 

 
where 𝑓(𝑘) = lim 

0 𝑡→+0 

 

 

𝑑𝑘𝑓(𝑡
) 

 

𝑑𝑡𝑘 

0 0 0 

5. Delay theorem: 

 

𝐿[𝑓(𝑡 − 𝑏)] = 𝑒−𝑏𝑝𝐿[𝑓(𝑡)] 
 

6. Similarity theorem: 

The 𝑎 > 0  formula takes place 

7. Displacement theorem: 

 

𝐿[ 

 
𝑓(𝑎𝑡)] 
= 

 
1 𝐹 ( 
𝑎 

 
𝑝
)

 
𝑎 

 
𝐿[𝑒−𝜆𝑡𝑓(𝑡)] = 𝐹(𝑝 + 𝝀) 

 
8. Multiplication theorem: 

 

𝐿[𝑡𝑛𝑓(𝑡)] = (−1)𝑛𝐹(𝑛)(𝑝) 
 

 
9. Division theorem: 

If the 1 𝑓(𝑡) Laplace transform is feasible, then the formula holds 
𝑡 
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1 
𝐿 [ 

𝑡 

+∞ 

𝑓(𝑡)] = ∫

 𝐹(𝑞)𝑑

𝑞 
𝑝 

 
Example. The formula is fair 

 

𝐿(𝑡) = 
+∞ 

𝑒−𝑝𝑡 𝑑𝑡 = 
1
. 

∫ 
0 𝑝 

 
In order to get 𝐿[𝑡𝑛] from here, we take into account that 

 

𝑑𝑛 
 

 

𝑑𝑝𝑛 
(
1

) = (−1)𝑛  
𝑛!

 
𝑝 𝑝𝑛+1 

 
Then, by multiplication theorem, we obtain that 

 

𝐿[𝑡𝑛] = 
𝑛! 

. 
𝑝𝑛+1 

 
Hence, according to the mixing theorem, we have 

 

𝐿[𝑒−𝜆𝑡𝑡𝑛] = 
𝑛!

 
(𝑝 + 𝜆)𝑛+1 

 

 
Direct Laplace transform 

The Laplace transform of a function of a real variable 𝑓(𝑡) is a function F(s) 

of a complex variable 𝑠 = 𝜎 + 𝑖𝜔, such that: 

 

∞ 

𝐹(𝑠) = ℒ{𝑓(𝑡)} = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 
0 

 

The right-hand side of this expression is called the Laplace integral. 

The function 𝑓(𝑡) is called the original and the image is often denoted as follows: 

 

𝑓(𝑡) ≓ 𝐹(𝑠) 𝑎𝑛𝑑 𝐹(𝑠) ≒ 𝑓(𝑡) 

 
Moreover, the image is usually written with a capital letter. 
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Inverse Laplace transform 

By inverse Laplace transform of a function of a complex variable. [6] 

If 𝐹(𝑝) is an analytical function in the domain 

 

𝑅𝑒𝑝 ≥ 𝑠 , lim 
|𝑝|→∞ 

𝐹(𝑝) = 0 

 
uniformly relative to argp and 

 

𝑠+𝑖∞ 

∫ |𝐹(𝑝)| |𝑑𝑝| < +∞, 
𝑠−𝑖∞ 

𝑜𝑟 𝐹(𝑝) is the image for the function 

 
𝑓(𝑡) =  

1 𝑠+𝑖∞ 
𝑒𝑝𝑡𝐹(𝑝)𝑑𝑝 

2𝜋𝑖 ∫𝑠−𝑖∞ 

 

where 𝑠 − is some real number. 

Of particular importance for applications is the inverse transformation of 

fractional rational functions with respect to 𝑝. 
Example. Let's find the function - original 

 

𝐹(𝑝) = 
1 

𝑝(𝑝 + 𝑎) 
,  𝑎 ≠ 0;

 
 

1 
= 

𝑝(𝑝 + 𝑎) 

1 
− 

𝑎𝑝 

1 
 

 

𝑎(𝑝 + 𝑎) 

 
The original is found by theorem of addition using the table from 

 

𝑓(𝑡) = 
1 

(1 − 𝑒−𝑎𝑡) 
𝑎 
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0 0 0 

2 -§. Application of the Laplace transform to the solution of ordinary 

differential equations with initial conditions 

 

The great advantage of solving the Cauchy problem for ordinary differential 

equations using the Laplace transform is that the desired particular solution is 

obtained directly, rather than fitting the general solution to the given initial 

conditions. [6]. 

Let a linear differential equation of the nth order with constant coefficients 

(𝑎0 ≠ 0, 𝑛 > 0) 

𝑎0𝑦(𝑛)(𝑡) + 𝑎1𝑦(𝑛−1)(𝑡) + ⋯ + 𝑎𝑛−1𝑦′(𝑡) + 𝑎𝑛𝑦(𝑡) = 𝑓(𝑡) 

 
and initial conditions 

𝑦(0) = 𝑦 ,  𝑦′(0) = 𝑦′ , … , 𝑦(𝑛−1)(0) = 𝑦(𝑛−1). 
0 0 0 

Application of the Laplace transform to a differential equation, taking into 

account the differentiation theorem and initial conditions, results in an equation of 

the form 

 

(𝑎0𝑝𝑛 + 𝑎1𝑝𝑛−1 + ⋯ + 𝑎𝑛)𝑌(𝑝) = 𝐹(𝑝) + 𝑦0(𝑎0𝑝𝑛−1 + 𝑎1𝑝𝑛−2 + ⋯ 𝑎𝑛−1) + 

+ 𝑦′ (𝑎0 𝑝𝑛−2 + 𝑎1
 𝑝𝑛−3 + ⋯ + 𝑎 𝑛−2 ) + ⋯ + 𝑦(𝑛−2)(𝑎 𝑝 + 𝑎1 ) + 𝑦(𝑛−1)𝑎 

 

or species 

 

where in 

 

𝑄(𝑝)𝑌(𝑝) = 𝐹(𝑝) + 𝑃(𝑝); 

𝑌(𝑝) = 𝐿[𝑦(𝑡)] - is the image of the desired solution, 

𝐹(𝑝) = 𝐿 [𝑓(𝑡)] - is the image of the right side of the original equation, and 

𝑄(𝑝) = 𝑎0𝑝𝑛 + 𝑎1𝑝𝑛−1 + ⋯ + 𝑎𝑛 − is the characteristic polynomial of the differential 

equation. It turns out that 

 

𝑌(𝑝) = 𝐹(𝑝) 
1 

 
 

𝑄(𝑝) 

𝑃(𝑝) 
+ 

𝑄(𝑝) 
 

If 𝑦1 (𝑡) 𝑎𝑛𝑑 
𝑦2 

(𝑡) they are the originals of the functions 1 
𝑄(𝑝) 

𝑎𝑛𝑑 
𝑃(𝑝) 

𝑄(𝑝) 

(they can be obtained by decomposing them into elementary fractions), then for the 

desired solution, according to the convolution theorem, we obtain the formula 

 

𝑡 

𝑦(𝑡) = ∫ 𝑓(𝑡 − 𝜏)𝑦1(𝜏)𝑑𝜏 + 𝑦2(𝑡) 
0 

0 0 
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1 

In this case, 𝐹(𝑝) does not need to be calculated. 

In a completely similar way, you can solve a system of differential equations with 

constant coefficients. If a system of equations is given 

 

𝑦′(𝑡) + 𝑎11𝑦1(𝑡) + ⋯ + 𝑎1𝑛𝑦𝑛(𝑡) = 𝑓1(𝑡) 
……………………… 

𝑦′ (𝑡) + 𝑎 𝑦 (𝑡) + ⋯ + 𝑎 𝑦 (𝑡) = 𝑓 (𝑡) 
𝑛 𝑛1  1 𝑛𝑛 𝑛 𝑛 

initial conditions 𝑦1(0), 𝑦2(0), … , 𝑦𝑛(0), then the Laplace transform transforms it 

into a system of n linear algebraic equations with respect to the n desired 

images 𝑌1(𝑝), 𝑌2(𝑝), … , 𝑌𝑛(𝑝): 

(𝑝 + 𝑎11)𝑌1(𝑝) + 𝑎12𝑌2(𝑝) + ⋯ + 𝑎1𝑛𝑌𝑛(𝑝) = 𝐹1(𝑝) + 𝑦1(0), 

 

𝑎21𝑌1(𝑝) + (𝑝 + 𝑎22)𝑌2(𝑝) + ⋯ + 𝑎2𝑛𝑌𝑛(𝑝) = 𝐹2(𝑝) + 𝑦2(0), 
………………………………………………………….. 

𝑎𝑛1𝑌1(𝑝) + 𝑎𝑛2𝑌2(𝑝) + ⋯ + (𝑝 + 𝑎𝑛𝑛)𝑌𝑛(𝑝) = 𝐹𝑛(𝑝) + 𝑦𝑛(0) 
 

The solutions 𝑌1(𝑝), 𝑌2(𝑝), … , 𝑌𝑛(𝑝) to this system must then be inversely 

transformed in order to obtain solutions 𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡) to the original 

Cauchy problem. 

 

Example 1. 

𝑦′(𝑡) + 2𝑦(𝑡) = 𝑓(𝑡), 

where 𝑓(𝑡) = 2[(𝑡 + 1)𝑒𝑡
2 

+ (1 + 2𝑡)], 𝑦(0) = 1. 

 
The Laplace transform leads to the equation 

 

𝑝𝑌(𝑝) − 1 + 2𝑌(𝑝) = 𝐿[𝑓(𝑡)] 
where 

𝑌(𝑝) = 
1 

+ 
𝑝 + 2 

𝐿[𝑓] 
 

 

𝑝 + 2 

 
According to the table of the inverse Laplace transformation and convolution 

theorem, we obtain that 
𝑡 

𝑦(𝑡) = 𝑒−2𝑡 + 2 ∫ 𝑒−2(𝑡−𝜏)[(𝜏 + 1)𝑒𝜏
2 

+ (1 + 2𝜏)]𝑑𝜏 
0 
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1 

2 

The calculation of the integral completes the solution of the problem: 

𝑦(𝑡) = 𝑒𝑡
2 

+ 2𝑡 

 

Example 2. 𝑦(4)(𝑡) + 2𝑦′′′(𝑡) + 2𝑦′′(𝑡) + 2𝑦′(𝑡) + 𝑦(𝑡) = 0, 

where 𝑦(0) = 𝑦′(0) = 0, 𝑦′′(0) = −2, 𝑦′′′(0) = 4. 

Trans formation Laplasplants 

 

(𝑝4 + 2𝑝3 + 2𝑝2 + 2𝑝 + 1)𝑌(𝑝) = −2𝑝 

 
The characteristic polynomial has a root of −1 times two and simple roots ±𝑖. 
Consequently, 

−2𝑝 
𝑌(𝑝) = 

(𝑝2 + 1)(𝑝 + 1)2 

The decomposition into elementary fractions has the form 

 

−2𝑝 𝐴 𝐵 𝐶𝑝 + 𝐷 

(𝑝2 + 1)(𝑝 + 1)2 
= 

𝑝 + 1 
+ 

(𝑝 + 1)2 
+

 
 

 

𝑝2 + 1 

 
Comparing the coefficients, we find 𝐴 = 0, 𝐵 = 1, 𝐶 = −1, 𝐷 = 0, that is 

1 1 
𝑌(𝑝) = 

(𝑝 + 1)2 
− 

𝑝2 + 1 

 
The table results in 

𝑦(𝑡) = 𝑡𝑒−𝑡 − 𝑠𝑖𝑛𝑡. 

 

Example 3. Solve the Cauchy problem for the system 

𝑦′(𝑡) + 𝑦2(𝑡) = 𝑒𝑡, 𝑦1(0) = 1 
 

𝑦′ (𝑡) − 𝑦1(𝑡) = −𝑒𝑡, 𝑦2(0) = 1 

 
Since the right parts of the system have a simple form, it can be easily 

transformed: 
1 

𝑝𝑌1(𝑝) + 𝑌2(𝑝) = 
𝑝 − 1 

+ 1 

1 
𝑝𝑌2(𝑝) − 𝑌1(𝑝) = − 

𝑝 − 1 
+ 1 



187  

that is  
𝑝 

𝑝𝑌1(𝑝) + 𝑌2(𝑝) = 
𝑝 − 1

 

𝑝 − 2 
𝑝𝑌2(𝑝) − 𝑌1(𝑝) = 

𝑝 − 1
 

 
From here we get 

𝑝2 − 𝑝 + 2 
𝑌1(𝑝) = 

(𝑝 − 1
 )(𝑝
2 

, 
+ 1) 

𝑝 
𝑌2(𝑝) = 

𝑝2 + 1
 

 
Expanding into simple fractions: 

 

𝑝2 − 𝑝 + 2 𝐴 𝐵𝑝 + 𝐶 

(𝑝 − 1)(𝑝2 + 1) 
= 

𝑝 − 1 
+

 
 

 

𝑝2 + 1 

 
and equating the coefficients, we get 𝐴 = 1, 𝐵 = 0, 𝐶 = − 1, that is 

 

1 
𝑌1(𝑝) = 

𝑝 − 1 
− 

1 
 

 

𝑝2 + 1 
 

From the table we find  

𝑦1(𝑡) = 𝑒𝑡 − 𝑠𝑖𝑛𝑡 
 

The original 𝑦2(𝑡) is directly indicated in the table: 

 

𝑦2(𝑡) = 𝑐𝑜𝑠𝑡 
 
 
 
 

 
3- §. Table of inverse Laplace transformation of fractional rational functions. 
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The functions in the table are arranged in increasing order of the 

denominator. The table is complete up to a denominator of degree 3, and also 

contains several functions whose denominators are polynomials of degree 4. [6]. 

Inverse Laplace transform tables 

𝐿[𝑓(𝑡)] 𝑓(𝑡) 
1 

 

𝑝 

1 

1 
 

𝑝 + 𝑎 

𝑒−𝑎𝑡 

1 
 

𝑝2 

t 

1 
 

𝑝(𝑝 + 𝑎) 

1 
(1 − 𝑒−𝑎𝑡) 

𝑎 
1 

 

(𝑝 + 𝑎)(𝑝 + 𝑏) 

1 
(𝑒−𝑎𝑡 − 𝑒−𝑏𝑡) 

𝑏 − 𝑎 
𝑝 

 

(𝑝 + 𝑎)(𝑝 + 𝑏) 
1 

(𝑎𝑒−𝑎𝑡 − 𝑏𝑒−𝑏𝑡) 
𝑎 − 𝑏 

1 
 

(𝑝 + 𝑎)2 

𝑡𝑒−𝑎 

𝑝 
 

(𝑝 + 𝑎)2 
𝑒−𝑎𝑡(1 − 𝑎𝑡) 

1 
 

𝑝2 − 𝑎2 

1 
𝑠ℎ(𝑎𝑡) 

𝑎 
𝑝 

 

𝑝2 − 𝑎2 
𝑐ℎ(𝑎𝑡) 

1 
 

𝑝2 + 𝑎2 

1 
𝑠𝑖𝑛(𝑎𝑡) 

𝑎 
𝑝 

 

𝑝2 + 𝑎2 
cos (𝑎𝑡) 

1 
 

(𝑝 + 𝑏)2 + 𝑎2 

1 
𝑒−𝑎𝑡𝑠𝑖𝑛(𝑎𝑡) 

𝑎 
𝑝 

 

(𝑝 + 𝑏)2 + 𝑎2 

𝑏 
𝑒−𝑏𝑡(cos(𝑎𝑡) − sin (𝑎𝑡) 

𝑎 
1 

 

𝑝3 

1 
𝑡2 

2 

1 
 

𝑝2(𝑝 + 𝑎) 

1 
(𝑒−𝑎𝑡 + 𝑎𝑡 − 1) 

𝑎2 

1 
 

𝑝(𝑝 + 𝑎)(𝑝 + 𝑏) 

1 
[(𝑎 − 𝑏) + 𝑏𝑒−𝑎𝑡 − 𝑎𝑒−𝑏𝑡] 

𝑎𝑏(𝑎 − 𝑏) 
1 

 

𝑝(𝑝 + 𝑎)2 

1 
(1 − 𝑒−𝑎𝑡 − 𝑎𝑡𝑒−𝑎𝑡) 

𝑎2 

1 
 

(𝑝 + 𝑎)(𝑝 + 𝑏)(𝑝 + 𝑐) 

1 [(𝑐 − 𝑏)𝑒−𝑎𝑡 + (𝑎 − 𝑐)𝑒−𝑏𝑡 + +(𝑏 − 𝑎)𝑒−𝑐𝑡] 
(𝑎−𝑏)(𝑏−𝑐)(𝑐−𝑎) 

𝑝 
 

(𝑝 + 𝑎)(𝑝 + 𝑏)(𝑝 + 𝑐) 

1 
[𝑎(𝑏 − 𝑐)𝑒−𝑎𝑡 + 𝑏(𝑐 − 𝑎)𝑒−𝑏𝑡 + 𝑐(𝑎 − 𝑏)𝑒−𝑐𝑡] 

(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎) 
𝑝2 

 

(𝑝 + 𝑎)(𝑝 + 𝑏)(𝑝 + 𝑐) 

1 
[𝑎2(𝑐 − 𝑏)𝑒−𝑎𝑡 + 𝑏2(𝑎 − 𝑐)𝑒−𝑏𝑡 + 𝑐2(𝑏 − 𝑎)𝑒−𝑐𝑡] 

(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎) 

1 
 

(𝑝 + 𝑎)(𝑝 + 𝑏)2 

1 
(𝑒−𝑎𝑡 − 𝑒−𝑏𝑡 − (𝑏 − 𝑎)𝑡𝑒−𝑏𝑡) 

(𝑏 − 𝑎)2 
𝑝 

 

(𝑝 + 𝑎)(𝑝 + 𝑏)2 

1 
 

2 {−𝑎𝑒−𝑎𝑡 + [𝑎 + 𝑏𝑡(𝑏 − 𝑎)𝑒−𝑏𝑡]} 
(𝑏 − 𝑎) 
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𝑝2 
 

(𝑝 + 𝑎)(𝑝 + 𝑏)2 

1 
{𝑎2𝑒−𝑎𝑡 + 𝑏(𝑏 − 2𝑎 − 𝑏2𝑡 + 𝑎𝑏𝑡)𝑒−𝑏𝑡} (𝑏 

− 𝑎)2 

1 
 

(𝑝 + 𝑎)3 

𝑡2 

𝑒−𝑎𝑡 
2 

𝑝 
 

(𝑝 + 𝑎)3 
𝑒−𝑎𝑡𝑡 (1 − 

𝑎 
𝑡) 

2 
𝑝2 

 

(𝑝 + 𝑎)3 

𝑎2 
𝑒−𝑎𝑡 (1 − 2𝑎𝑡 + 𝑡2) 

2 

1 
 

𝑝[(𝑝 + 𝑏)2 + 𝑎2] 

1 𝑏 
[1 − 𝑒−𝑏𝑡(cos(𝑎𝑡) + sin (𝑎𝑡)] 

𝑎2 + 𝑏2 𝑎 
1 

 

𝑝(𝑝2 + 𝑎2) 

1 

𝑎2 (1 − cos(𝑎𝑡)) 

1 
 

(𝑝 + 𝑎)(𝑝2 + 𝑏2) 

1 𝑎 
[𝑒−𝑎𝑡 + sin(𝑏𝑡) − cos (𝑏𝑡)] 

𝑎2 + 𝑏2 𝑏 
𝑝 

 

(𝑝 + 𝑎)(𝑝2 + 𝑏2) 

1 
 

2 2 
[−𝑎𝑒−𝑎𝑡 + 𝑎cos(𝑏𝑡) + 𝑏sin (𝑏𝑡)] 𝑎 + 𝑏 

𝑝2 
 

 

(𝑝 + 𝑎)(𝑝2 + 𝑏2) 

1 
[𝑎2𝑒−𝑎𝑡 − 𝑎𝑏 sin(𝑏𝑡) + 𝑏2cos (𝑏𝑡)] 

𝑎2 + 𝑏2 

1 
 

(𝑝 + 𝑎)[(𝑝 + 𝑏)2 + 𝑐2] 

1 𝑎 − 𝑏 
[𝑒−𝑎𝑡 − 𝑒−𝑏𝑡 cos(𝑐𝑡) + 𝑒−𝑏𝑡sin (𝑐𝑡)] 

(𝑏 − 𝑎)2 + 𝑐2 𝑐 
𝑝 

 

(𝑝 + 𝑎)[(𝑝 + 𝑏)2 + 𝑐2] 

1 𝑎𝑏 − 𝑏2 − 𝑐2 
2 2 [−𝑎𝑒−𝑎𝑡 ∓ 𝑎 cos(𝑐𝑡) +  𝑒−𝑏𝑡sin (𝑐𝑡)] 

(𝑏 − 𝑎) + 𝑐 𝑐 

1 
 

(𝑝 + 𝑎)[(𝑝 + 𝑏)2 + 𝑐2] 

1 
[𝑎2𝑒−𝑎𝑡 + ((𝑎 − 𝑏)2+𝑐2 − 𝑐2)𝑒−𝑏𝑡 cos(𝑐𝑡) − (𝑎𝑐 

(𝑏 − 𝑎)2 + 𝑐2 

(𝑎 − 𝑏)𝑏 
+ 𝑏 (𝑐 − ))𝑒−𝑏𝑡sin (𝑐𝑡)] 

𝑐 

1 
 

𝑝4 

1 
𝑡3 

6 

1 
 

𝑝3(𝑝 + 𝑎) 

1 1 1 1 
− 𝑡 + 𝑡2 − 𝑒−𝑎𝑡 

𝑎3 𝑎2 2𝑎 𝑎3 

1 
 

𝑝2(𝑝 + 𝑎)(𝑝 + 𝑏) 

𝑎 + 𝑏 1 1 1 
− + 𝑡 + 𝑒−𝑎𝑡 + 𝑒−𝑏𝑡 

𝑎2𝑏2 𝑎𝑏 𝑎2(𝑏 − 𝑎) 𝑏2(𝑎 − 𝑏) 

1 
 

𝑝2(𝑝 + 𝑎)2 

1 2 
𝑡(1 + 𝑒−𝑎𝑡) + (𝑒−𝑎𝑡 − 1) 

𝑎2 𝑎3 

1 
 

(𝑝 + 𝑎)2(𝑝 + 𝑏)2 

1 2 2 
[𝑒−𝑎𝑡 (𝑡 +  ) + 𝑒−𝑏𝑡 (𝑡 −  )] 

(𝑎 − 𝑏)2 (𝑎 − 𝑏) 𝑎 − 𝑏 

1 
 

(𝑝 + 𝑎)4 

1 
𝑡3𝑒−𝑎𝑡 

6 

𝑝 
 

(𝑝 + 𝑎)4 

1 𝑎 
𝑡2𝑒−𝑎𝑡 −  𝑡3𝑒−𝑎𝑡 

6 6 

1 
 

(𝑝2 + 𝑎2)(𝑝2 + 𝑏2) 

1 1 1 
[ sin(𝑎𝑡) −  sin (𝑏𝑡)] 

𝑏2 − 𝑎2 𝑎 𝑏 
𝑝 

 

(𝑝2 + 𝑎2)(𝑝2 + 𝑏2) 

1 
[cos (𝑎t) − 𝑐𝑜𝑠(𝑏𝑡)] 

𝑏2 − 𝑎2 

𝑝2 
 

(𝑝2 + 𝑎2)(𝑝2 + 𝑏2) 

1 
[−𝑎 sin(𝑎𝑡) + 𝑏sin (𝑏𝑡)] 

𝑏2 − 𝑎2 

𝑝3 
 

(𝑝2 + 𝑎2)(𝑝2 + 𝑏2) 

1 
[−𝑎2cos (𝑎𝑡) + 𝑏2cos (𝑏𝑡)] 

𝑏2 − 𝑎2 

1 
 

(𝑝2 + 𝑎2)2 

1 1 
[ sin(𝑎𝑡) − 𝑡𝑐𝑜𝑠(𝑎𝑡)] 

2𝑎2 𝑎 

𝑝 
 

(𝑝2 + 𝑎2)2 

1 

2𝑎 
𝑡𝑠𝑖𝑛(𝑎𝑡) 
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𝑝2 
 

(𝑝2 + 𝑎2)2 

1 
(sin(𝑎𝑡) + 𝑎𝑡𝑐𝑜𝑠(𝑎𝑡)) 

2𝑎 

𝑝3 
 

(𝑝2 + 𝑎2)2 

1 
[2 cos(𝑎𝑡) − 𝑎𝑡𝑠𝑖𝑛(𝑎𝑡)] 

2 

1 
 

[(𝑝 + 𝑏)2 + 𝑎2]2 

𝑒−𝑏𝑡 1 

2𝑎2 [
𝑎 

sin(𝑎𝑡) − 𝑡𝑐𝑜𝑠(𝑎𝑡)] 

1 
 

𝑝2(𝑝2 + 𝑎2) 

1 1 

𝑎2 (𝑡 − 
𝑎 

sin (𝑎𝑡)) 
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4- §. Operator method for solving ordinary 

differential equations 

This method consists of passing from a differential equation to an auxiliary 

algebraic equation through an integral transformation. 

The Laplace transform is often used as an integral transform. 
+∞ 

𝐹(𝑝) = 𝐿{𝑓(𝑡)} = ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡 
0 

Information on the conditions under which the image 𝐹(𝑝) exists, on the 

properties of the Laplace transform, and the table of images can be found in the 

section on integral transformations. 

Application of the operator method to solving linear differential equations 

with constant coefficients. 

Let it be necessary to find a solution to the Cauchy problem 

 

 

where 

𝑑 

 
 
 

 
𝑑𝑛 

𝑑 
𝑄𝑛 (

𝑑𝑡
) 𝑦 = 𝑓(𝑡) 

 
𝑑𝑛−1 𝑑 

𝑄𝑛 (
𝑑𝑡

) 𝑦 = (𝑎0 
𝑑𝑡𝑛 + 𝑎1 

𝑑𝑡𝑛−1 + ⋯ + 𝑎𝑛−1 
𝑑𝑡 

+ 𝑎0) 𝑦(𝑡) 

 
𝑦(0) = 𝑦 , 𝑦′(0) = 𝑦′ , … , 𝑦(𝑛−1)(0) = 𝑦(𝑛−1), 𝑎 (𝑖 = 0,1, . . , 𝑛)– permanent. 

0 0 0 𝑖 

 
Using the Laplace transform, we reduce this equation, using the notation 

𝐿{𝑦(𝑡)} = 𝑌(𝑝) 𝑎𝑛𝑑 𝐿{𝑓(𝑡)} = 𝐹(𝑝), to the auxiliary equation 
 

 

𝑄 (𝑝)𝑌(𝑝) = 𝑎 (𝑝𝑛−1𝑦 + 𝑝𝑛−2𝑦′ + ⋯ + 𝑝𝑦
(𝑛−2) 

+ 𝑦
(𝑛−1)

) + 
𝑛 0 0 0 0 0 

 

+𝑎 (𝑝𝑛−2𝑦 + 𝑝𝑛−3𝑦′ + ⋯ + 𝑝𝑦(𝑛−3) + 𝑦(𝑛−2)) + ⋯ + 𝑎 𝑦 + 𝐹(𝑝) 
1 0 0 0 0 

or 

𝑛−1 0 

𝑄𝑛(𝑝)𝑌(𝑝) = 𝑀(𝑝) + 𝐹(𝑝) 
 

where 𝑄𝑛(𝑝) = 𝑎0𝑝𝑛 + 𝑎1𝑝𝑛−1 + ⋯ + 𝑎𝑛. The solution to the resulting equation has 

the form 

𝑌(𝑝) = 
𝑀(𝑝
) 

 
 

𝑄𝑛(𝑝
) 

𝐹(𝑝) 
+ 

𝑄𝑛(𝑝) 

 
The inverse transformation carried out only for the second term gives a 

solution to the differential equation with zero initial values. 
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𝑘 

Example. 𝑦′′′ − 3𝑦′′ + 𝑦′ − 3𝑦 = 6𝑒3𝑡; 𝑦(0) = 1, 𝑦′(0) = 0, 𝑦′′(0) = 1. 
In this case 

𝐹(𝑝) = 𝐿(6𝑒3𝑡) = 
6

 
𝑝 − 3 

and the solution to the auxiliary equation has the form 

 
𝑝2 − 3𝑝 + 2 6 

𝑌(𝑝) = 
𝑝3 − 3𝑝2 + 𝑝 − 3 

+ 
(𝑝 − 3)(𝑝3 − 3𝑝2 + 𝑝 − 3) 

 
To calculate the inverse transformation 𝑌(𝑝), we expand the right-hand side 

into simple fractions: 

 

𝑌(𝑝) = 
1 29𝑝 − 3 ( 2 + 

(
 15 4 

)2 − ) 

25 𝑝 + 1 𝑝 − 3 𝑝 − 3 

 
Using the Laplace transformation table, we find the original in this image: 

 

𝑦(𝑡) = 3 𝑡𝑒 
5 

3
𝑡 

− 
4 

𝑒 
25 

3
𝑡 

+ 
29 

2
5 

𝑐𝑜𝑠𝑡 − 3 𝑠𝑖𝑛𝑡. ■ 
25 

 
Dan problem Cauchy 

 

𝑛 𝑛 

∑ 𝑎𝑖𝑘𝑦′ (𝑡) + ∑ 𝑏𝑖𝑘𝑦(𝑡) = 𝑓𝑖(𝑡) (𝑖 = 1,2, … , 𝑛) 
𝑘=1 𝑘=1 

𝑦𝑖(0) = 𝑦𝑖0 (𝑖 = 1,2, … , 𝑛) 

 
under the condition det (𝑎𝑖𝑘) ≠ 0. (Applying the Laplace transform to this system, 

we obtain for the transformed functions 𝑌𝑖(𝑝) = 𝐿(𝑦𝑖(𝑡)) the system 

 

𝑛 𝑛 

∑(𝑝𝑎𝑖𝑘 + 𝑏𝑖𝑘)𝑌𝑖(𝑝) = 𝐹𝑖(𝑝) + ∑ 𝑎𝑖𝑘𝑦𝑘0 
𝑘=1 𝑘=1 

where 𝐹𝑖(𝑝) = 𝐿(𝑓𝑖(𝑡)). From this auxiliary system we find 𝑌𝑘(𝑝), the inverse 

transformation and thus obtain the solution to the Cauchy problem. 

Example. Find the general solution of the system 

 
𝑦′ − 𝑦1 + 𝑦2 = 𝑡, 𝑦′ − 4𝑦1 + 3𝑦2 = 2 
1 2 
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Let us assume  𝑦1(0) = 𝐶1, 𝑦2(0) = 𝐶2, and solve the auxiliary system 

 
1 

(𝑝 − 1)𝑌1(𝑝) + 𝑌2(𝑝) = 
𝑝2 + 𝐶1 

 

-4𝑌1 (𝑝
) 

+ (𝑝 + 3 )𝑌2 (𝑝
) 

2 
= 

𝑝 
+ 𝐶2 

 

Relatively 𝑌1(𝑝) 𝑎𝑛𝑑 𝑌2(𝑝); we get that 
 

𝑌1(𝑝) = 
𝐶1𝑝3 + (3𝐶1 − 𝐶2)𝑝2 − 𝑝 + 3 

 
 

𝑝3(𝑝 + 1)2 
 

𝑌2(𝑝) = 
𝐶2𝑝3 + (2 − 𝐶2 + 4𝐶1)𝑝2 − 2𝑝 + 4 

 
 

𝑝3(𝑝 + 1)2 
 

Carrying out the inverse transformation, we obtain the general solution 

 

𝑦1(𝑡) = 3𝑡 − 7 + 𝑒−𝑡((4 + 2𝐶1 − 𝐶2)𝑡 + 7 + 𝐶1) 
 

𝑦2(𝑡) = 4𝑡 − 10 + 𝑒−𝑡((8 − 2𝐶2 + 4𝐶1)𝑡 + 10 + 𝐶2) 
 
 
 
 
 
 
 

 
5 - §. Application of operational calculus to the solution of some differential 

equations 
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0 

0 

If given a linear differential equation of nth order with constant coefficients 

 

𝑦(𝑛) + 𝑎1𝑦(𝑛−1) + ⋯ + 𝑎𝑛𝑦 = 𝑓(𝑡) 

 
the right side of which 𝑓(𝑡) is the original, then the solution of this 

equation, satisfying arbitrary initial conditions of the form  𝑦(0) = 𝑦0, 𝑦′(0) 

= 𝑦′ , … , 

𝑦(𝑛−1)(0) = 𝑦(𝑛−1) (that is, the solution of the Cauchy problem posed for this 

equation, with initial conditions at 𝑡 = 0), serves as the original. Denoting the 

image of this solution by �̅�(𝑝) , we find the image of the left side of the original 

differential equation and, equating it to the image of the function 𝑓(𝑡), we 

arrive at the so-called representing equation, which is always a linear algebraic 

equation with respect to �̅�(𝑝) . Having determined the formula of this equation 

�̅�(𝑝) , we find the original 𝑦(𝑡). 

Example 1. Solve the differential equation 𝑦′′ − 2𝑦′ − 3𝑦 = 𝑒3𝑡, if  𝑦(0) = 0, 

𝑦′(0) = 0. 
Solution. Let's move on to the images: 

𝑝2𝑦 − 𝑝 ∙ 𝑦(0) − 𝑦′(0) − 2(𝑝�̅� − 𝑦(0)) − 3 �̅� = 
1

 
𝑝 − 3 

or 

𝑝2�̅� − 2𝑝�̅� − 3�̅� = 
1

 
𝑝 − 3 

 
1 

; �̅� = 
(𝑝 + 1)(𝑝 − 3)2 

Let's expand the rational fraction into simpler fractions: 
1 𝐴 𝐵 𝐶 

(𝑝 + 1)(𝑝 − 3)2 
= 

(𝑝 − 3)2 
+ 

𝑝 − 3 
+ 

𝑝 + 1 

 
1 = 𝐴(𝑝 + 1) + 𝐵(𝑝 − 3)(𝑝 + 1) + 𝐶(𝑝 − 3)2 

 

Putagayar 𝑝 = − 1, we get 1 = 16𝐶, that is С = 1/16; 𝑝 = 3 we have 

1 = 4𝐴, that is А = 
1
. Comparing the coefficients  р2, we get 0 = 𝐵 + 𝐶, that is 
4 

𝐵 = −𝐶 = 
1 

. There fore, 
16 

1 1 1 

 
where 

�̅� = 
4(𝑝 − 3)2 

− 
16(𝑝 − 3) 

+ 
16(𝑝 + 1) 

𝑦 = 1 𝑡𝑒 
4 

3
𝑡 

− 
1 

𝑒 
16 

3
𝑡 

+ 
1 

𝑒 
16 

−𝑡 . ■ 
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Example 2. Solve a system of equations 
𝑑𝑥 

 
 

{ 𝑑𝑡 = 𝑥 + 2𝑦 

 

if 𝑥(0) = 0, 𝑦(0) = 5). 

𝑑
𝑦 

 
 

𝑑𝑡 

= 2𝑥 + 𝑦 + 1 

Solution. Moving on to the images, we have 

 

𝑝 ∙ 𝑥̅(𝑝) = 𝑥̅(𝑝) + 2 �̅�(𝑝) 
{
𝑝 ∙ �̅�(𝑝) − 5 = 2�̅�(𝑝) + �̅�(𝑝) + 

1
 
𝑝 

 
Solving this system for relative �̅� 𝑎𝑛𝑑 �̅�,  we get 

 

10𝑝 + 2 5𝑝2 − 4𝑝 − 1 
𝑥̅(𝑝) = 

𝑝(𝑝 + 1)(𝑝 − 3) 
, �̅�(𝑝) = 

𝑝(𝑝 + 1)(𝑝 − 3) 

 
𝑢(𝑝) = 10𝑝 + 2, 𝑣(𝑝) = 𝑝3 − 2𝑝2 − 3𝑝, 𝑣′(𝑝) = 3𝑝2 − 4𝑝 − 3 

 
𝑝1 = 0, 𝑝2 = −1, 𝑝3 = 3 

 

𝑢(𝑝1) 
 

 

𝑣′(𝑝1

) 

𝑢(0) 2 
= = −  , 

𝑣′(0) 3 

𝑢(𝑝2) 
= 

𝑢(−1) 
= −2,

 

𝑣′(𝑝2) 𝑣′(−1) 

𝑢(𝑝3) 
= 

𝑢(3) 
= 

8 

𝑣′(𝑝3) 𝑣′(3) 3 

 

Thus, 

 

Similarly we find 

 

𝑥 = − 
2

 
3 

 
− 2𝑒 

 
−𝑡 

 

+ 
8 

𝑒 
3 

 
3𝑡. 

𝑦 = 
1 

+ 2𝑒−𝑡 
3 

8 
 

+  𝑒 
3 

3𝑡 

 
 
 

 
IV- chapter. 

Examples for independent work 

 

1. Integrate differential equations with separable variables. [3] 
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𝑠 

1) 𝑦𝑑𝑥 – 𝑥𝑑𝑦 = 0 answer. 𝑌 = Сх 

 
2) (1 + 𝑢)𝑣𝑑𝑢 + ( 1 – 𝑣)𝑢𝑑𝑣 = 0 answer. 𝑙𝑛 𝑢𝑣 + 𝑢 – 𝑣 = 𝐶 

 
3) ( 1 + 𝑦) 𝑑𝑥 – (1 – 𝑥) 𝑑𝑦 = 0 answer. (1 + 𝑦)(1 – 𝑥) = 𝐶 

 

4)( 𝑡2 − 𝑥𝑡2) 
𝑑𝑥 

+ 𝑥2 + 𝑡𝑥2 = 0 answer. 𝑡+𝑥 + 𝑙𝑛 
𝑥
 = 𝐶 

𝑑𝑡 𝑡𝑥 𝑡 

 
1 

5) (𝑦 – 𝑎) 𝑑𝑥 + 𝑥2𝑑𝑦 = 0 answer. 𝑦 − 𝑎 = 𝐶𝑒𝑥 

 

6) 𝑧 𝑑𝑡 – (𝑡2 − 𝑎2)𝑑𝑧 = 0 answer. 𝑧2𝑎 = 𝐶 
𝑡−𝑎

 
𝑡+𝑎 

 

7) 𝑑𝑥 = 
1+ 𝑥2

. answer. 𝑥 = 
𝑦+𝐶

 
𝑑𝑦 1+𝑦2 1−𝐶𝑦 

 
  

8) ( 1 + 𝑠2 ) 𝑑𝑡 − √𝑡𝑑𝑠 = 0 𝑎𝑛𝑠𝑤𝑒𝑟. 2√𝑡 − 𝑎𝑟𝑐𝑡𝑔𝑠 = 𝐶 

9) 𝑑𝑝 + 𝑝𝑡𝑔𝜃𝑑𝜃 = 0 answer. 𝑝 = 𝐶 𝑐𝑜𝑠𝜃 

 

10) (1 + 𝑥2)𝑑𝑦 − √1 − 𝑦2𝑑𝑥 = 0 answer. 𝑎𝑟𝑐𝑠𝑖𝑛𝑦 – 𝑎𝑟𝑐𝑡𝑔𝑥 = 𝐶 
 

2. Integrate the following homogeneous differential equations: 

 

11) ( 𝑦 – 𝑥 ) 𝑑𝑥 + ( 𝑦 + 𝑥) 𝑑𝑦 = 0 answer. 𝑦2 + 2𝑥𝑦 − 𝑥2 = 𝐶 

 
12) ( 𝑥 + 𝑦) 𝑑𝑥 + 𝑥𝑑𝑦 = 0 answer. х2 + 2ху = С 

 

13) ( 𝑥 + 𝑦)𝑑𝑥 + (𝑦 – 𝑥) 𝑑𝑦 = 0 answer. 𝑙𝑛√𝑥2 + 𝑦2 − 𝑎𝑟𝑐𝑡𝑔 
𝑦
 
𝑥 

= 𝐶 

 
 

14) 𝑥𝑑𝑦 – 𝑦𝑑𝑥 = √𝑥2 + 𝑦2 𝑑𝑥 answer. 1 + 2Су – 𝐶2𝑥2 = 0 

15) (8𝑦 + 10𝑥) 𝑑𝑥 + (5𝑦 + 7𝑥) 𝑑𝑦 = 0 answer. (х + у)2(2х + у)3 = С 

16) ( 𝑡 – 𝑠 ) 𝑑𝑡 + 𝑡 𝑑𝑠 = 0 answer. 𝑡𝑒𝑡 = 𝐶 𝑎𝑛𝑑 𝑠 = 𝑡𝑙𝑛 
𝐶
 
𝑡 

17) 𝑥𝑦2𝑑𝑦 = (𝑥3 + 𝑦3) 𝑑𝑥 answer. 𝑦 = 𝑥 
3
√3𝑙𝑛𝐶𝑥 
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18) (2√𝑠𝑡 − 𝑠) 𝑑𝑡 + 𝑡𝑑𝑠 = 0 𝑎𝑛𝑠𝑤𝑒𝑟. 𝑡𝑒 

 
 

𝑠 
𝑡 = 𝐶 𝑎𝑛𝑑 𝑠 = 𝑡𝑙𝑛2 

𝐶
 
𝑡 

 
3. Integrate differential equations reduced to homogeneous ones: 

 

19) (3𝑦 − 7𝑥 + 7)𝑑𝑥 – (3𝑥 − 7𝑦– 3)𝑑𝑦 = 0 

answer. (х + у − 1)5(х − у − 1)2 = С 

 
20) (𝑥 + 2𝑦 + 1) 𝑑𝑥 – (2𝑥 + 4𝑦 + 3) 𝑑𝑦 = 0 

answer. 𝑙𝑛(4𝑥 + 8𝑦 + 5) + 8𝑦 − 4𝑥 = 𝐶 
 

21) (𝑥 + 2𝑦 + 1) 𝑑𝑥 – (2𝑥 – 3) 𝑑𝑦 = 0 answer.ln(2𝑥 − 3) − 
4𝑦+5 

= 𝐶 
2𝑥−3 

 
4. Integrate the following linear differential equations: 

 

22) у′ − 
2у

 
х+1 

= (х + 1)3𝑎𝑛𝑠𝑤𝑒𝑟. 2𝑦 = (𝑥 + 1)4 + 𝐶(𝑥 + 1)2 

23) 𝑦′ − 𝑎 
у 

= 
х+1 

𝑎𝑛𝑠𝑤𝑒𝑟. 𝑦 = 𝐶𝑥𝑎 +  
𝑥 

− 
1
 

х х 1−𝑎 𝑎 

 

24) (𝑥 – 𝑥3) 𝑦′ + (2𝑥2 – 1)𝑦 − 𝑎𝑥3 = 0 answer. 𝑦 = 𝑎𝑥 + 𝐶𝑥√1 − 𝑥2 

 
25) 𝑑𝑠 𝑐𝑜𝑠𝑡 + 𝑠𝑠𝑖𝑛𝑡 = 1 answer. 𝑠 = 𝑠𝑖𝑛𝑡 + 𝐶𝑐𝑜𝑠𝑡 

𝑑𝑡 

26) 𝑑𝑠 + 𝑠𝑐𝑜𝑠𝑡 = 
1 

𝑠𝑖𝑛2𝑡 𝑎𝑛𝑠𝑤𝑒𝑟. 𝑠 = 𝑠𝑖𝑛𝑡 − 1 + 𝐶𝑒−𝑠𝑖𝑛𝑡 
𝑑𝑡 2 

 

27) 𝑦′ + 
𝑛 

𝑦 = 
𝑎
 

 
𝑎𝑛𝑠𝑤𝑒𝑟. 𝑥𝑛𝑦 = 𝑎𝑥 + 𝐶 

𝑥 𝑥𝑛 

 
28) 𝑦′ + 𝑦 = 𝑒−𝑥 answer .𝑒𝑥𝑦 = 𝑥 + 𝐶 

 

29) 𝑦′ + 
1−2𝑥 

𝑦 − 1 = 0 
𝑥2 𝑎𝑛𝑠𝑤𝑒𝑟. 𝑦 = 𝑥 

1 

2(1 + 𝐶𝑒𝑥) 
 

30)  𝑦′ − 
𝑛 

𝑥 
𝑦 = 𝑒 𝑥𝑥𝑛 𝑎𝑛𝑠𝑤𝑒𝑟. 𝑦 = 𝑥 𝑛(𝑒𝑥 + 𝐶) 

5. Integrate the Bernoulli equations: 

 

31) 𝑦′ + 𝑥𝑦 = 𝑥3𝑦3 answer. 𝑦2(𝑥2 + 1 + С𝑒𝑥
2 
) = 1 

√ 
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32) (1 – 𝑦2) 𝑦′ − 𝑥𝑦 – 𝑎𝑥𝑦2 = 0 answer.(С√1 − 𝑥2 − 𝑎)𝑦 = 1 

33) 3𝑦2у′ −𝑎𝑦3 – 𝑥 – 1 = 0 answer. 𝑎2𝑦3 = С𝑒𝑎𝑥 − 𝑎(𝑥 + 1) − 1 
𝑦2 𝑦2 

34) 𝑦′ (𝑥3𝑦3 + 𝑥𝑦) = 1 answer. 𝑥[(2 − 𝑦2)𝑒 2 ] + 𝐶 = 𝑒 2 

 
35) (𝑦𝑙𝑛𝑥 – 2) 𝑦𝑑𝑥 = 𝑥𝑑𝑦 answer. 𝑦(𝐶𝑥2 + 𝑙𝑛𝑥2 + 1) = 4 

 

36) 𝑦 − 𝑦′ 𝑐𝑜𝑠𝑥 = 𝑦2𝑐𝑜𝑠𝑥( 1 – 𝑠𝑖𝑛𝑥) answer. 𝑦 = 
𝑡𝑔𝑥+𝑠𝑒𝑐𝑥

 
𝑠𝑖𝑛𝑥+𝐶 

 
6. Integrate the following equations in total differentials: 

 

37) (𝑥2 + 𝑦)𝑑𝑥 + (𝑥 – 2𝑦)𝑑𝑦 = 0 answer. 𝑥
3 

+ 𝑦𝑥 − 𝑦2 = 𝐶 
3 

 
38) (𝑦 – 3𝑥2)𝑑𝑥 – (4𝑦 – 𝑥)𝑑𝑦 = 0 answer. 2𝑦2 − 𝑥𝑦 + 𝑥3 = 𝐶 

 
39) (𝑦3 – 𝑥) 𝑦′ = 𝑦 answer. 𝑦4 = 4𝑥𝑦 + 𝐶 

 

40) 𝑥𝑑𝑥+
(2𝑥+𝑦)𝑑𝑦 

= 0 answer. ln(𝑥 + 𝑦) − 
𝑥
 = 𝐶 

(𝑥+𝑦)2 𝑥+𝑦 

 

 1  3𝑦2 2𝑦𝑑𝑦 ( + ) 𝑑𝑥 = 𝑎𝑛𝑠𝑤𝑒𝑟.  𝑥2 + 𝑦2 = 𝐶𝑥3 
𝑥2 𝑥4 𝑥3 

 

42) 𝑥
2𝑑𝑦− 𝑦2𝑑𝑥 

= 0 answer. 𝑥𝑦 = 𝐶 
(𝑥−𝑦)2 𝑥−𝑦 

 

43) 𝑥𝑑𝑥 + 𝑦𝑑𝑦 = 
𝑦𝑑𝑥−𝑥𝑑𝑦

 
𝑥2+𝑦2 

answer. 𝑥2 + 𝑦2 
𝑥 

− 2𝑎𝑟𝑐𝑡𝑔  = 𝐶 
𝑦 

 

44) [ 
𝑦2 

− 
1
] 𝑑𝑥 + [

1 
− 

𝑥2

 ] 𝑑𝑦 = 0 answer. 𝑦 𝑥𝑦 = 𝐶 
 

  

(𝑥−𝑦)2 𝑥 

 
  

𝑦 (𝑥−𝑦)2 
𝑙𝑛  − 

𝑥 𝑥−𝑦 

 
 
 

 
7. Integrate the following equations (Lagrange equations): 

 

45) 𝑦 = 2𝑥𝑦′ + 𝑦′2 answer. 𝑥 = 
𝐶 2

 
𝑦 = 

2𝐶−𝑝3 

3𝑝2 − 
3 

𝑝, 
3𝑝 

41) 
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′2 ′2 ( 

8 

2 

46) 𝑦 = 𝑥𝑦 + 𝑦 answer. 𝑦 = √𝑥 + 1 + 𝐶) . Special solution 𝑦 = 0 

 
47) 𝑦 = 𝑥(1 + 𝑦′) + (𝑦′)2 answer. 𝑥 = 𝐶𝑒−𝑝 − 2𝑝 + 2, 

𝑦 = 𝐶(𝑝 + 1)𝑒−𝑝 − 𝑝2 + 2 

 
48) 𝑦 = 𝑦𝑦′2 + 2𝑥𝑦′ answer. 4𝐶𝑥 = 4𝐶2 − 𝑦2 

 
8. Solve the Riccati equation: [6] 

 

49) 𝑦′ = у2 − (2х + 1)у + (х2 + х + 1) 

answer. 𝑧′′ + (2𝑥 + 1)𝑧′ + (𝑥2 + 𝑥 + 1)𝑧 = 0 

50)  𝑦′ − 3𝑦2 = 𝑥 
−

8 
5, 𝑚 = −  , 

5 
𝑘 = −2, 𝑎 = −3, 𝑏 = 1. 

answer. у̿ − 15у̿2 = 5 

51) 𝑑𝑦 = 𝑦2 +  
1 

answer. 𝑦 = 
1
 

𝑑𝑥 2𝑥2 [ 
1 

] 
𝑥 −1+𝑡𝑔(𝑐− 𝑙𝑛𝑥) 

2 

 
9. Integrate the data from the Clairaut equation: 

 

52) 𝑦 = 𝑥𝑦′ + 𝑦′ − 𝑦′2 

answer. 𝑦 = 𝐶𝑥 + 𝐶 − 𝐶2. Special solution ∶ 4𝑦 = (𝑥 + 1)2 
 

53) 𝑦 = 𝑥𝑦′ + √1 − у′2 
 

answer. 𝑦 = 𝐶𝑥 + √1 − 𝐶2. Special solution: 𝑦2 − 𝑥2 = 1 
 

54) 𝑦 = 𝑥𝑦′ + 𝑦′ answer. 𝑦 = 𝐶𝑥 + 𝐶 
 

55) 𝑦 = 𝑥𝑦′ + 
1 

. answer. 
𝑦′ 

у = Сх + 
 

 1 . Special solution: у2 
С 

= 4х 

 

56) 𝑦 = 𝑥𝑦′ − 
1
 

у′2 
𝑎𝑛𝑠𝑤𝑒𝑟. 𝑦 = 𝐶𝑥 − 

1
 
𝐶2 

. Special solution: 𝑦3 = − 
27 

𝑥2 
4 

 
 

 
10.  Integrate the following linear differential equations with constant 

coefficients: 

 

57) у′′ = 9у answer. 𝑦 = 𝐶1𝑒3𝑥 + 𝐶2𝑒−3𝑥 
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58) 𝑦′′ + 𝑦 = 0 answer. 𝑦 = 𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥 

 
59) 𝑦′′ − 𝑦′ = 0 answer. 𝑦 = 𝐶1 + 𝐶2𝑒𝑥 

60) у′′ + 12у = 7у′ answer. 𝑦 = 𝐶1𝑒3𝑥 + 𝐶2𝑒4𝑥 

 
61) у′′ − 4у′ + 4у = 0 answer. 𝑦 = (𝐶1 + 𝐶2𝑥)𝑒2𝑥 

 
62) у′′ + 2у′ + 10у = 0 answer. 𝑦 = 𝑒−𝑥(𝐴𝑐𝑜𝑠3𝑥 + 𝐵𝑠𝑖𝑛3𝑥) 

 
3𝑥 

63) 4𝑦′′ − 12𝑦′ + 9𝑦 = 0 answer. 𝑦 = (𝐶1 + 𝐶2𝑥)𝑒 2 
 

′′ ′ 
𝑥 √3 √3 

64) 𝑦 + 𝑦 + 𝑦 = 0 answer. 𝑦 = 𝑒 2 [𝐴𝑐𝑜𝑠 ( 
2 

𝑥) + 𝐵𝑠𝑖𝑛 ( 
2 

𝑥)] 

 
11. Integrate the following inhomogeneous linear differential equations 

(find the general solution): 

 

65) у′′ − 7у′ + 12у = 𝑥 answer. 𝑦 = 𝐶1 𝑒3𝑥 + 𝐶2 𝑒4𝑥 + 
12𝑥+7 

144 
 

66) 𝑠′′ − 𝑎2𝑠 = 𝑡 + 1 answer. 𝑠 = 𝐶1 𝑒𝑎𝑡 + 𝐶2 𝑒−𝑎𝑡 − 
𝑡+1 

𝑎2 

 
67) 𝑦′′ + 𝑦′ − 2𝑦 = 8 𝑠𝑖𝑛2𝑥 

answer. 𝑦 = 𝐶1 𝑒𝑥 + 𝐶2 𝑒−2𝑥 
1 

−  (6𝑠𝑖𝑛2𝑥 + 2𝑐𝑜𝑠2𝑥) 
5 

 
68) 𝑦′′ − 𝑦 = 5𝑥 + 2 answer. 𝑦 = 𝐶1𝑒𝑥 + 𝐶2𝑒−𝑥 − 5𝑥 − 2 

 

69) 𝑠′′ − 2𝑎𝑠′ + 𝑎2𝑠 = 𝑒𝑡(𝑎 ≠ 1) 𝑎𝑛𝑠𝑤𝑒𝑟. 𝑠 = 𝐶1 𝑒𝑎𝑡 + 𝐶2 𝑡𝑒𝑎𝑡 + 
𝑒𝑡

 

(𝑎−1)2 

 

70) 𝑦′′ + 6 𝑦′ + 5𝑦 = 𝑒2𝑥 answer. 𝑦 = 𝐶1 𝑒−𝑥 + 𝐶2 𝑒−5𝑥 + 
1 
21 

𝑒2𝑥 

 
 
 

 
12. Integrate the following systems of equations: 

− 
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1 

4 
𝑑𝑥 

− 
𝑑𝑦 

+ 3𝑥 = 𝑠𝑖𝑛𝑡 
71) { 𝑑𝑡 𝑑𝑡 

𝑑𝑥 + 𝑦 = 𝑐𝑜𝑠𝑡 
𝑑𝑡 

 
 

 
𝑑2𝑦 

= 𝑥
 

𝑎𝑛𝑠𝑤𝑒𝑟.  𝑥 = 𝐶1𝑒−𝑡 + 𝐶2𝑒−3𝑡, 𝑦 = 𝐶1𝑒−𝑡 + 3𝐶2𝑒−2𝑡 

72) {𝑑𝑡
2
 

𝑑2𝑥 
= 𝑦

 
𝑑𝑡2 

𝑎𝑛𝑠𝑤𝑒𝑟. 𝑥 = 𝐶1𝑒𝑡 + 𝐶2𝑒−𝑡 + 𝐶3𝑐𝑜𝑠𝑡 + 𝐶4𝑠𝑖𝑛𝑡 

𝑦 = 𝐶1𝑒𝑡 + 𝐶2𝑒−𝑡 − 𝐶3𝑐𝑜𝑠𝑡 − 𝐶4𝑠𝑖𝑛𝑡 
 

𝑑2𝑥 
+ 

𝑑𝑦 
+ 𝑥 = 𝑒𝑡 

73) {𝑑𝑡
2
 
𝑑𝑥 

𝑑𝑡 
𝑑2𝑦 𝑎𝑛𝑠𝑤𝑒𝑟. 𝑥 = 𝐶1 + 𝐶2𝑡 + 𝐶3𝑡2 −  𝑡3 6 + 𝑒𝑡 

𝑑𝑡 
+ 

𝑑𝑡2 
= 1

 
𝑦 = 𝐶 − (𝐶 + 2𝐶 1 )𝑡 −  ( ) 2 

1
 

3 

1 
𝑡4 − 𝑒𝑡 

4 1
 3 2 

𝐶2 − 1 𝑡 − 
3 

𝐶3𝑡 + 
24

 

 

 
74) { 

𝑑𝑦 = 𝑧 − 𝑦 
𝑑𝑥 

𝑑𝑧 = −𝑦 − 3𝑧 
𝑑𝑥 

𝑎𝑛𝑠𝑤𝑒𝑟. 𝑦 = (𝐶1 + 𝐶2𝑥)𝑒−2𝑥, 𝑧 = (𝐶2 − 𝐶1 − 𝐶2𝑥)𝑒−2𝑥 
 

 
75) 

𝑑𝑥 = 𝑦 + 𝑧 
𝑑𝑡 

𝑑𝑦 = 𝑥 + 𝑧 
𝑑𝑡 

𝑑𝑧 = 𝑥 + 𝑦 
𝑑𝑡 

 
𝑎𝑛𝑠𝑤𝑒𝑟. 𝑥 = 𝐶1 

 
𝑒−𝑡 + 𝐶2 

 
𝑒2𝑡, 𝑦 = 𝐶3 

 
𝑒−𝑡 + 𝐶2 

 

 

𝑒2𝑡 

𝑧 = −(𝐶1 + 𝐶3)𝑒−𝑡 + 𝐶2𝑒2𝑡 
 
 

 
𝑑𝑦 

= 1 − 
1 

76) {𝑑𝑥 𝑧 
𝑑𝑧 

= 
1 𝑎𝑛𝑠𝑤𝑒𝑟. 𝑧 = 𝐶2 𝑒𝐶1𝑥 , 𝑦 = 𝑥 + 

1
 

𝐶1𝐶2 
𝑒−𝐶1𝑥 

𝑑𝑥 𝑦−𝑥 

 
𝑑𝑦 

= 
𝑥 

77) { 
𝑑𝑥

 𝑦𝑧 𝑎𝑛𝑠𝑤𝑒𝑟. 
𝑧

 2 3 2 

𝑑𝑧 
= 

 𝑥  𝑦 
= 𝐶1, 𝑧𝑦 −  𝑥 

2 
= 𝐶2 

𝑑𝑥 𝑦2 

 
𝑑𝑦 + 𝑧 = 0 

78) { 𝑑𝑥 
𝑑𝑧 + 4𝑦 = 0 
𝑑𝑥 

{ 
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𝑎𝑛𝑠𝑤𝑒𝑟. 𝑦 = 𝐶1𝑒2𝑥 + 𝐶2𝑒−2𝑥𝑧 = −2(𝐶1𝑒2𝑥 − 𝐶2𝑒−2𝑥) 

 
13. Application of operational calculus to the solution of some differential 

equations [3] 

Solve differential equations: 

 

79) 𝑦′ − 2𝑦 = 0; 𝑦(0) = 1. 𝑎𝑛𝑠𝑤𝑒𝑟. 𝑦 = 𝑒2𝑡 
 

80) 𝑦′ + 𝑦 = 𝑒𝑡; 𝑦(0) = 0. 𝑎𝑛𝑠𝑤𝑒𝑟. 𝑦 = 𝑠ℎ𝑡 
 

81) 𝑦′′ − 9𝑦 = 0; 𝑦(0) = 𝑦′(0) = 0. 𝑎𝑛𝑠𝑤𝑒𝑟. 𝑦 = 0 
 

82) 𝑦′′ + 𝑦′ − 2𝑦 = 𝑒𝑡; 𝑦(0) = −1; 𝑦′(0) = 0. 

answer. 𝑦 = 1 𝑡𝑒𝑡 
3 

− 
7 

𝑒𝑡 9 − 
2 

𝑒 
9 

−2𝑡 

83) 𝑦′′′ − 6𝑦′′ + 11𝑦′ − 6𝑦 = 0; 𝑦(0) = 0, 𝑦′(0) = 1, 𝑦′′(0) = 0 
 

answer. 𝑦 = − 
5 

𝑒𝑡
 

2 
+ 4𝑒 2

𝑡 
− 

3 
𝑒 

2 

3𝑡 

Solve systems of equations: 

 

𝑑𝑥 = 2𝑦 
84) {𝑑𝑡 

𝑑𝑦 = 2𝑥 
𝑑𝑡 

 
𝑥(0) = 2, 𝑦(0) = 2. 

 

answer. 𝑥 = 
5 

𝑒
 

2 
2
𝑡 

− 
1 

𝑒 
2 

−2𝑡 , 𝑦 = 
5 

𝑒
 

2 
2
𝑡 

− 
1 

𝑒 
2 

−2𝑡 

 

𝑑𝑥 = 3𝑥 + 4𝑦 
85) {𝑑𝑡 

𝑑𝑦 = 4𝑥 − 3𝑦 
𝑑𝑡 

 
x(0) = 1, y(0) = 1. 

 

answer. 𝑥 = 
6 

𝑒
 

5 
5
𝑡 

− 
1 

𝑒 
5 

−5𝑡 , 𝑦 = 
3 

𝑒
 

5 
5
𝑡 

+ 
2 

𝑒 
5 

−5𝑡 

 
 

Self - test questions 

 

1. What are the basic concepts of a differential equation? 
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2. What is a differential equation? 

3. Tell me the general concepts about first order differential equations? 

4. How can you distinguish between equations with separated and separable 

variables? 

5. What are the types of homogeneous first order equations? 

6. Which equations are considered homogeneous? 

7. Which equations are considered first order linear equations? 

8. Show Bernoulli equation 

9. What equations are considered equations in total differentials? 

10. What are integrating factors? 

11. Show Clairaut's equation? 

12. Which differential equations are considered to be of higher order? 

13. What are the general properties of a linear homogeneous equation? 

14. Show linear homogeneous equations of the second order with constant 

coefficients. 

15. What equations are called linearly independent? 

16. Distinguish between an inhomogeneous equation and a homogeneous 

equation. 

17. What are the types of inhomogeneous second-order linear equations with 

constant coefficients? 

18. Inhomogeneous linear equations of higher orders 

19. Which systems are called normal? 

20. What equations are called characteristic equations? 
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