Pemanfaatan Fungi Agen Hayati Bagi Pertanian Ramah Lingkungan Berkelanjutan

Authors

  • Sutarman Sutarman Universitas Muhammadiyah Sidoarjo

Keywords:

Fungi Agen Hayati, Pertanian Berkelanjutan, Pengendalian Hayati

Abstract

Judul Pemanfaatan Fungi Agen Hayati Bagi Pertanian Ramah Lingkungan Berkelanjutan

  • Pendahuluan
  • Fungi Agen Hayati Potensial
  • Formulasi Dan Aplikasi
  • Prospek Riset Dan Hilirisasi
  • Penutup

Editor: M.Tanzil Multazam

Published by

Universitas Muhammadiyah Sidoarjo Press, Sidoarjo, 2025

ISBN:

  • ISBN :

Deskripsi :

Dalam menghadapi tantangan degradasi lahan dan ketergantungan terhadap pupuk serta pestisida kimia, pemanfaatan fungi sebagai agen hayati menjadi solusi inovatif dalam mendukung pertanian yang ramah lingkungan dan berkelanjutan. Fungi agen hayati seperti Trichoderma spp., Beauveria bassiana, dan Mycorrhizae memiliki peran penting dalam meningkatkan kesuburan tanah, merangsang pertumbuhan tanaman, serta melindungi tanaman dari serangan patogen secara alami.

Fokus Utama :

Peningkatan Kesuburan dan Kesehatan Tanah

Fungi seperti mikroba mikoriza berperan dalam meningkatkan kemampuan tanaman menyerap nutrisi (N, P, K, Zn, dll.) dan memperbaiki struktur tanah melalui pembentukan jaringan hifa yang memperluas volume akar.

Fitur Unik :

Kemampuan Simbiosis dengan Akar Tanaman

  • Fungi seperti mikoriza membentuk hubungan mutualistik dengan akar, memperluas jaringan serapan air dan nutrisi—fitur biologis alami yang tidak dimiliki pupuk kimia.

Target Audiens :

Petani dan Kelompok Tani

  • Tujuan: Memberikan alternatif pertanian yang efisien, hemat biaya, dan ramah lingkungan.Fokus: Praktik budidaya berbasis hayati, pengurangan input kimia, peningkatan hasil panen.

Downloads

Download data is not yet available.

References

[NCBI] National Center for Biotechnology Infromation (2025) Basic Logical Alignment Search Tool. http://www.ncbi.nlm.nih.gov/BLAST

Abiri R, Rizan N, Balasundram SK, Shahbazi AB, Abdul-Hamid H. Application of digital technologies for ensuring agricultural productivity. Heliyon. 2023 Nov 21;9(12):e22601. doi: 10.1016/j.heliyon.2023.e22601. PMID: 38125472; PMCID: PMC10730608.

Alali, S., Mereghetti, V., Faoro, F., Bocchi, S., Al Azmeh, F. & Montagna, M. (2019) Thermotolerant isolates of Beauveria bassiana as potential control agent of insectpest in subtropical climates. PLoS ONE 14(2): e0211457. https://doi.org/10.1371/ journal.pone.0211457

Alhwaiti Y, Khan M, Asim M, Siddiqi MH, Ishaq M, Alruwaili M. Leveraging YOLO deep learning models to enhance plant disease identification. Sci Rep. 2025 Mar 7;15(1):7969. doi: 10.1038/s41598-025-92143-0. PMID: 40055410; PMCID: PMC11889226.

An C, Sun C, Li N et al. (2022) Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. Journal of Nanobiotechnology. 20 (1), p. 11

Anjali Panwar, Suvendu Manna, Gayatri Sahini, Vivek Kaushik, Manoj Kumar,, Muthusamy Govarthanan (2025) The legacy of endophytes for the formation of bioactive agents, pigments, biofertilizers, nanoparticles and bioremediation of environment. World J Microbiol Biotechnol 41(2):52. doi: 10.1007/s11274-025-04265-2.

Ansari M, Ahmed S, Abbasi A, Hamad NA, Ali HM, Khan MT, Haq IU, Zaman QU (2023) Green synthesized silver nanoparticles: a novel approach for the enhanced growth and yield of tomato bagainst early blight disease. Microorganisms 11(4):886. https://doi. org/

10. 3390/ micro organ isms1 10408 86

Arora S, Murmu G, Mukherjee K, Saha S, and Maity D. (2022) A comprehensive overview of nanotechnology in sustainable agriculture. Journal of Biotechnology. 355, pp. 21–41.

Avram A, Rapuntean S, Gorea M et al. (2022) In vitro antibacterial effect of forsterite nanopowder: synthesis and characterization. Environmental Science and Pollution Research International. 29(51), pp. 77097-77112

Aynalem, B., Muleta, D. Venegas, J. & Assefa, F. (2021) Molecular phylogeny and pathogenicity of indigenous Beauveria bassiana against the tomato leafminer, Tuta absoluta Meyrick 1917 (Lepidoptera: Gelechiidae), in Ethiopia. Journal of Genetic Engineering and Biotechnology 19:127. https://doi.org/10.1186/s43141-021-00227-x

Barkha Devi, Ranjita Devi, Shrijana Pradhan, Nazung Lepcha (2022) Theory at a glance: Health belief models in predicting health behaviors. J.Bio.Innov11(2), pp: 410-421, https://doi.org/10.46344/JBINO.2022.v11i02.13

Bienvenu Tsakem, Joseph Tchamgoue, Rosemary Tonjock Kinge , Gesqiere Laure M Tiani , Rémy Bertrand Teponno, Simeon F Kouam (2024) Diversity of African fungi, chemical constituents and biological activities. Fitoterapia 8:106154. doi: 10.1016/j.fitote.2024.106154

Brownlie WJ, Alexander P, Cordell D, Maslin M, Metson GS, Sutton MA, Spears BM. National phosphorus planning for food and environmental security. Curr Opin Biotechnol. 2024 Dec;90:103226. doi: 10.1016/j.copbio.2024.103226. Epub 2024 Nov 12. PMID: 39536632.

Chechi, A., Stahlecker, J., Dowling, M. E., & Schnabel, G. (2019) Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide Biochemistry and Physiology. https://doi.org/10.1016/j.pestbp.2019.04.002.

Chi-Wei Huang, Chitsan Lin, Minh Ky Nguyen, Adnan Hussain, Xuan-Thanh Bui, Huu Hao Ngo (2023) A review of biosensor for environmental monitoring: principle, application, and corresponding achievement of sustainable development goals

Bioengineered. ;14(1):58-80. doi:

10.1080/21655979.2022.2095089.

Chongyuan Zhang, Weiwei Wang, Ming Xue, Zhen Liu, Qinman Zhang, Jumei Hou, Mengyu Xing, Rui Wang, and Tong Liu (2021) The Combination of aBiocontrol agent Trichoderma asperellum SC012 and Hymexazol Reduces the Effective Fungicide Dose to Control Fusarium Wilt in Cowpea. J Fungi (Basel). 7(9): 685. doi: 10.3390/jof7090685

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 57.

https://doi.org/10.3390/pharmaceutics10020057

Dante Ferreyra-Suarez a , Octavio García-Depraect b,c , Roberto Castro- Munoz (2024) A review on fungal-based biopesticides and biofertilizers production. Ecotoxicol Environ Saf. 283:116945. doi: 10.1016/j.ecoenv.2024.116945

Debnath A, Hasan MM, Raihan M, Samrat N, Alsulami MM, Masud M, Bairagi AK. A Smartphone-Based Detection System for Tomato Leaf Disease Using EfficientNetV2B2 and Its Explainability with Artificial Intelligence (AI). Sensors (Basel). 2023 Oct 24;23(21):8685. doi: 10.3390/s23218685. PMID: 37960385; PMCID: PMC10648786.

E. Sansinenea (2021) Application of biofertilizers: current worldwide status Biofertil. Vol. 1: Adv. Biol. inoculants, 10.1016/B978-0-12- 821667-5.00004-X

Ejiohuo O, Onyeaka H, Unegbu KC, Chikezie OG, Odeyemi OA, Lawal A, Odeyemi OA. Nourishing the Mind: How Food Security Influences Mental Wellbeing. Nutrients. 2024 Feb 9;16(4):501. doi: 10.3390/nu16040501. PMID: 38398825; PMCID: PMC10893396.

Elsherbiny, A.S.; Galal, A.; Ghoneem, K.M.; Salahuddin, N.A. (2024) Graphene oxide-based nanocomposites for outstanding eco-

friendly antifungal potential against tomato phytopathogens.

Biomater. Adv. 160, 213863

Emilio Montesinos (2024) Functional Peptides for Plant Disease Control. Annu. Rev. Phytopathol. 61:301–24. https://doi.org/10.1146/annurev-phyto-021722- 034312

Enrique Quesada-Moraga, Inmaculada Garrido-Jurado, Natalia Gonz´ alez-Mas, Meelad Yousef-Yousef (2023). Ecosystem services of entomopathogenic ascomycetes. J Invertebr Pathol 201:108015. https://doi.org/10.1016/j.jip.2023.108015

Erawati, D. N., Wardati, I. ., Suharto, S., Aji, . J. M. M. ., Ida, N. C. ., & Suprapti, Y. (2021) Infection Pathways Beauveria bassiana and Metarhizium anisopliae For Bio-Control of Coleoptera:Oryctes rhinoceros L. Jurnal Penelitian Pertanian Terapan, 21(3), 220-

226. https://doi.org/10.25181/jppt.v21i3.2139

Esparza, MA., Conteiro, CAM., Fraga, ME. ( 2017) Classification and infection mechanism of entomopathogenic fungi. Arq Inst Biol 84:1–10.

FAO. 2022. The State of Food Security and Nutrition in the World 2022. https://openknowledge.fao.org/server/api/core/bitstreams/d4fd1d7 7-ad58-4821-aaa1-dceefb635c5d/content

Ferrusquía-Jiménez NI, González-Arias B, Rosales A et al. (2022) Elicitation of Bacillus cereus-Amazcala (B.c-A) with SiO2 nanoparticles improves its role as a plant growth-promoting bacteria (PGPB) in chili pepper plants. Plants. 11(24), p. 3445

Food and Agriculture Organization of the United Nations 2023. The State of Food Security and Nutrition in the World 2023: Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum. Available online: htps://openknowledge.fao.org/server/api/core/bitstreams/1f66b67 b-1e45-45d1-b003-86162fd35dab/content

Foumani FAS, Soltani MS, Zomorodi S, Jafarian S, and Khosrowshahi

AA. (2022) Effect of chia seed mucilage coating containing zinc oxide nanoparticleson shelf life of chicken fillet. Veterinary Research Forum. 13 (4), pp. 577-585

Gao L, Cui X. Climate change and food security: Plant science roles. Mol Plant. 2023 Oct 2;16(10):1481-1483. doi:

10.1016/j.molp.2023.09.019. Epub 2023 Sep 25. PMID:

37752704.

Gebremariam, A., Chekol, Y. & Assefa F. (2021) Phenotypic,molecular, and virulence characterization ofentomopathogenic fungi, Beauveria bassiana (Balsam) Vuillemin, and Metarhizium anisopliae (Metschn.) Sorokin from soil samples of Ethiopia for the development of mycoinsecticide. Heliyon 7 e07091. https://doi.org/10.1016/j.heliyon.2021.e07091

Gülmez B. Advancements in maize disease detection: A comprehensive review of convolutional neural networks. Comput Biol Med. 2024 Dec;183:109222. doi: 10.1016/j.compbiomed.2024.109222. Epub 2024 Oct 9. PMID: 39388838.

Gulzar ABM and Mazumder PB (2022) Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Environmental Science and Pollution Research International.. 29(27), pp. 40319–40341

Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft Matter, 12(11), 2826–2841. https://doi.org/10.1039/C5SM02958A

Hawksworth DL, Lücking R. (2017) Fungal diversity revisited: 2.2 to

3.8 million species. Microbiol Spectrum 5(4):FUNK-0052- 2016. doi:10.1128/microbiolspec.FUNK-0052-2016.

He A, LiuJ, Wang X, Zhang Q, Song W, & Che J (2019) Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J. Integr. Agric. 18 (3): 599–606.

Heino, M., Kinnunen, P., Anderson, W., Ray, D.K., Puma, M.J., Varis, O., Siebert, S., and Kummu, M. (2023). Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Sci. Rep. 13:3583. https://doi.org/10.1038/ s41598-023-29378-2.

Itelima, J.U., W. J. Bang, M. D. Sila, I. A. Onyimba & O. J. Egbere (2018) A Review: Biofertilizer; A Key Player in Enhancing Soil Fertility and Crop Productivity. J Microbiol. 2 (1): 74–83.

Jallow MFA., Awadh, DG., Albaho, MS., Devi, VY. & Thomas, BM. (2017). Pesticide knowledge and safety practices among farm workers in Kuwait: results of a survey. Int. J. Environ. Res. Public Health. 14 (4): 340.

Jung DR, Vendrametto O. Agroforestry for Food Security and Public Health: A Comprehensive Review. Int J Environ Res Public Health. 2025 Apr 19;22(4):645. doi: 10.3390/ijerph22040645. PMID:

40283866; PMCID: PMC12026487.

Kabir Md.G, Wang Y, Abuhena Md., Azim F, Al-Rashid J, Rasul NM, Mandal D, & Maitra P. (2023) A bio-sustainable approach for reducing Eucalyptus tree-caused agricultural ecosystem hazards employing Trichoderma bio-sustained spores and mycorrhizal networks. Front Microbiol. 13:1071392. doi: 10.3389/fmicb.2022.1071392. eCollection 2022.

Kaur R, Bhardwaj G, Saini S, Kaur N, and Singh N. (2023) A high- performance Calix@ZnO based bifunctional nanomaterial for selective detection and degradation of toxic azinphos methyl in environmental samples. Chemosphere, 316, article 137693

Khan, S.T.; Adil, S.F.; Shaik, M.R.; Alkhathlan, H.Z.; Khan, M.; Khan,

M. (2022) Engineered nanomaterials in soil: Their impact on soil microbiome and plant health. Plants, 11, 109.

Kumar S, Stecher G, Li M, Knyaz C, & Tamura K. (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.

Kumar, A., Verma, L. M., Sharma, S., and Singh, N. (2022) Overview on Agricultural Potentials of Biogas Slurry (BGS): Applications, Challenges, and Solutions. Springer Berlin, Heidelberg 1–41

Kumari, R.; Singh, D.P. (2020) Nano-biofertilizer: An Emerging Eco- friendly Approach for Sustainable Agriculture. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 90, 733–741

Lavicoli I, Leso V, Beezhold DH, and Shvedova AA. (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology. 329, pp. 96-111

Li M., Ma G., Lian H, Su X, Tian Y, Huang, W, Mei J, Jiang, X. (2019) The effects of Trichoderma on preventing cucumber fusarium wilt and regulating cucumber physiology. Journal of Integrative Agriculture, 18(3), 607–617.doi:10.1016/s2095-3119(18)62057-x

Lieu, M.D.; Phuong, T.V.; Nguyen, T.T.B.; Dang, T.K.T.; Nguyen, T.H. (2024) A review of preservation approaches for extending avocado fruit shelf-life. J. Agric. Food Res. 16, 101102

Litwin, A., Nowak, M. & Rozalska, S. (2020). Entomopathogenic fungi: unconventional applications. Rev. Environ. Sci. Biotechnol. 19, 23e42.

López AC, Giorgio EM, Vereschuk ML, Zapata PD, Luna MF, & Alvarenga (2023). Ilex paraguariensis hosts root-Trichoderma spp. with plant-growth-promoting traits: Characterization as biological control agents and biofertilizers. Curr Microbiol. 80(4):120. doi: 10.1007/s00284-023-03231-1.

Lynas, M., Houlton, B.Z., and Perry, S. (2021). Greater than 99% consensus on human caused climate change in the peer-reviewed scientific literature. Environ. Res. Lett. 16, 114005. https://doi.org/10. 1088/1748-9326/ac2966.

Marelli B. Biomaterials for boosting food security. Science. 2022 Apr 8;376(6589):146-147. doi: 10.1126/science.abo4233. Epub 2022

Apr 7. PMID: 35389805.

Maudrie TL, Nguyen CJ, Wilbur RE, Mucioki M, Clyma KR, Ferguson GL, Jernigan VBB. Food Security and Food Sovereignty: The Difference Between Surviving and Thriving. Health Promot Pract. 2023 Nov;24(6):1075-1079. doi: 10.1177/15248399231190366. PMID: 37877640; PMCID: PMC11938391.

Moloinyane, S. & Nchu, F (2019) The Effects of endophytic Beauveria bassiana inoculation on infestation level of Planococcus ficus, growth and volatile constituents ofpotted greenhouse grapevine (Vitis vinifera L.). Toxins 11, 72; doi:10.3390/toxins1102007

Monclaro, Antonielle V.; Petrović, Dejan M.; Alves, Gabriel S. C.; Costa, Marcos M. C.; Midorikawa, Glaucia E. O.; Miller, Robert

N. G.; Filho, Edivaldo X. F.; Eijsink, Vincent G. H.; Várnai, Anikó; Berrin, Jean-Guy (2020) Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity. PLOS ONE, 15(7), e0235642–

.doi:10.1371/journal.pone.0235642

Moulick, R.G.; Das, S.; Debnath, N.; Bandyopadhyay, K. (2020) Potential use of nanotechnology in sustainable and ‘smart’ agriculture: Advancements made in the last decade. Plant Biotechnol. Rep., 14, 505–513.

Murad Muhammad , Abdul Basit, Kashif Ali, Haris Ahmad, Wen-Jun Li, Ayesha Khan, Heba I Mohamed (2024) A review on endophytic fungi: a potent reservoir of bioactive metabolites with special emphasis on blight disease management.. Arch Microbiol. 206(3):129. doi: 10.1007/s00203-023-03828-x

N. Ramírez-Guzmán, M. Chávez-González, L. Sepúlveda-

orre, C. Torres- León, A. Cintra, J. Angulo- López, J.L. Martínez, C.N. Aguilar (2020) Significant Advances in Biopesticide Production: Strategies for High-Density Bio- Inoculant Cultivation. Microbial Services in Restoration Ecology

pp. 1-11, 10.1016/B978-0-12-819978-7.00001-4

Nascimento Brito, V.; Lana Alves, J.; Sírio Araújo, K.; de Souza Leite, T.; Borges de Queiroz, C.; Liparini Pereira, O.; de Queiroz, M.V. (2023) Endophytic Trichoderma species from rubber trees native to the Brazilian Amazon, including four new species. Front. Microbiol. 14, 1095199.

Natsiopoulos, D.; Topalidou, E.; Mantzoukas, S.; Eliopoulos, P.A. (2024) Endophytic Trichoderma: Potential and Prospects for Plant Health Management. Pathogens, 13, 548. https://doi.org/10.3390/ pathogens13070548

Navale, V., Vamkudoth, K. R., Ajmera, S., & Dhuri, V. (2021) Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicology Reports, 8, 1008 1030.doi:10.1016/j.toxrep.2021.04.013

Neha Panwar and Adrianna Szczepaniec (2024) Endophytic entomopathogenic fungi asbiological control agents of insect pests. Pest Management Science, 80 (12), 6025-6637 https://doi.org/10.1002/ps.8322

Nishi, O., Sushida, H., Higashi, Y. & Iida, Y. (2020) Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus Beauveria bassiana strainGHA. Mycology 1-9.

Pavlicevic M, Abdelraheem W, Zuverza-Mena N et al. (2022) Engineered nanoparticles, natural nanoclay and biochar, ascarriers of plant-growth promoting bacteria. Nanomaterials. 12 (24), p. 4474.

Pörtner LM, von Philipsborn P, Fesenfeld L. Food Security and Sustainability in Times of Multiple Crises. Ann Nutr Metab. 2023;79(1):1-2. doi: 10.1159/000527743. Epub 2022 Oct 27.

PMID: 36302343.

Q. Zhang, W. Ma, Q. Zhao, Y. Zhao, Z. Huang, Y. Xu, D. Zhu, J. Li, and

X. Zhang (2021) Biochemical Systematics and Ecology 94 104198

Qiu Z, Paungfoo-Lonhienne C, Ye J et al. (2022) Biofertilizers can enhance nitrogen use efficiency of sugarcane. Environmental Microbiology. 24(8), pp. 3655-3671

Quesada, ME. (2020) Entomopathogenic fungi as endophytes: their broader contribution to IPM and crop production. Biocontrol Sci. Technol. 30, 864-877.

Rajput, V.D.; Singh, A.; Minkina, T.; Rawat, S.; Mandzhieva, S.; Sushkova, S.; Shuvaeva, V.; Nazarenko, O.; Rajput, P.; Komariah; et al. (2021) Nano-enabled products: Challenges and opportunities for sustainable agriculture. Plants, 10, 2727.

Raposo A, Saraiva A. Nutrition and Food Security for All: A Step Towards the Future. Nutrients. 2025 Apr 2;17(7):1241. doi: 10.3390/nu17071241. PMID: 40218998; PMCID: PMC11990794.

Reveglia, P.; Corso, G.; Evidente, A. (2024) Advances on Bioactive Metabolites with Potential for the Biocontrol of Plant Pathogenic Bacteria. Pathogens, 13, 1000. https://doi.org/10.3390/ pathogens13111000

Sambana B, Nnadi HS, Wajid MA, Fidelia NO, Camacho-Zuñiga C, Ajuzie HD, Onyema EM. An efficient plant disease detection using transfer learning approach. Sci Rep. 2025 May 30;15(1):19082. doi: 10.1038/s41598-025-02271-w. PMID: 40447666; PMCID: PMC12125318.

Sánchez-Rodríguez, AR., Raya-Díaz, S., Zamarreño, ÁM.,García-Mina, JM., del Campillo, MC. & Quesada- Moraga, E. (2018) An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biol. Control 116, 90– 102.

Shafik W, Tufail A, De Silva Liyanage C, Apong RAAHM. Using transfer learning-based plant disease classification and detection for sustainable agriculture. BMC Plant Biol. 2024 Feb 26;24(1):136. doi: 10.1186/s12870-024-04825-y. PMID:

38408925; PMCID: PMC10895770.

Shafik W, Tufail A, Liyanage De Silva C, Awg Haji Mohd Apong RA. A novel hybrid inception-xception convolutional neural network for efficient plant disease classification and detection. Sci Rep. 2025 Jan 31;15(1):3936. doi: 10.1038/s41598-024-82857-y. PMID: 39890849; PMCID: PMC11785716.

Sheridan L Woo , Rosa Hermosa, Matteo Lorito , Enrique Monte (2023) Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol, 21(5):312-326 doi: 10.1038/s41579-022-00819-5

Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, Trivedi P. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol. 2023 Oct;21(10):640-656. doi: 10.1038/s41579-023-00900-7. Epub 2023 May 2. PMID: 37131070; PMCID: PMC10153038.

Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49. https://doi.org/10.1016/j.jconrel.2017.03.008

Srishti Singh, Alok Kumar Singh, Bhubaneswar Pradhan, Sudipta Tripathi, Kewat Sanjay Kumar, Sasmita Chand, Prangya Ranjan Rout, Muhammad Kashif Shahid (2024) Harnessing Trichoderma Mycoparasitism as a Tool in the Management of Soil Dwelling Plant Pathogens. Microbial Ecology 87:158

https://doi.org/10.1007/s00248-024-02472-2

Sutarman dan Tyas Prahasti (2022) Uji Keragaan Trichoderma Sebagai Pupuk Hayati Dalam Meningkatkan Pertumbuhan Dan Produksi Tanaman Bawang Merah. J. Agrotek Tropika, 10 (3), 421 – 428. DOI : http://dx.doi.org/10.23960/jat.v10i3.5737

Sutarman, Agus Miftahurrohmat, & Andriani Eko Prihatiningrum (2022) Fungus Applications on Growth and Yield of Dena-1 Soybean Varieties. E3S Web of Conferences 361, 04019 (2022) https://doi.org/10.1051/e3sconf/202236104019

Sutarman, Andriani E. Prihatiningrum, Noviana Indarwati, Risalatul Hasanah, & Agus Miftahurrohmat (2023) The Role of Trichoderma in The Early Growth of Rice and Soybean in Saline Soils. E3S Web of Conferences 444, 04006 (2023). https://doi.org/10.1051/e3sconf/202344404006

Sutarman, Andriani Eko Prihatiningrum, & Agus Miftahurrohmat (2022) Fungistatic Effect of Ipomea Carnea Extract and Trichoderma Esperellum Against Various Fungal Biological Agents. IOP Conf. Series: Earth and Environmental Science 1012 (2022) 012046. https://doi:10.1088/1755-1315/1012/1/012046

Sutarman, Antika D. Anggreini, Andriani E. Prihatiningrum, & Agus Miftahurrohmat (2023) Application of Biofertilizing Agents and Entomopathogenic Fungi in Lowland Rice. E3S Web of Conferences 444, 04009 (2023). https://doi.org/10.1051/e3sconf/202344404009

Sutarman, Miftahurrohmat, A., Nurmalasari, I.R., & Prihatinnigrum,

A.E. (2021). In vitro evaluation of the inhibitory power of Trichoderma harzianum against pathogens that cause anthracnose in Chili. Journal of Physics: Conference Series 1764(2021)012026. doi:10.1088/1742-6596/1764/1/012026

Sutarman, Prihatiningrum AE, & Miftahurrohmat A (2023) Application of trich oderma and aspergillus as biofertilizers in eco-friendly ratoon rice cultivation. Asian Journal of Agriculture and Rural Development,13(4), 277–287. 10.55493/5005.v13i4.4934

https://doi.org/10.55493/5005.v13i4.4934

Sutarman, Prihatiningrum, A. E., & Miftahurrohmat, A. (2023) Application of trichoderma and aspergillus as biofertilizers in eco- friendly ratoon rice cultivation. Asian Jour nal of Agriculture and Rural Development. 13(4), 277–287. 10.55493/5005.v13i4.4934.

Sutarman, Miftahurrohmat A, Prihatiningrum AE, & S. Arifin (2021) Biomass Extract of Ipomea carnea and Its Inhibition against Trichoderma asperellum, E3S Web of Conferences 316, 03011 (2021). https://doi.org/10.1051/e3sconf/202131603011

Sutarman, A. Miftahurrohmat, AE. Prihatiningrum and S. Arifin (2021) Biomass Extract of Ipomea carnea and Its Inhibition against Trichoderma asperellum, E3S Web of Conferences 316, 03011. https://doi.org/10.1051/e3sconf/202131603011

T. Das, C.K. Tudu, S. Nandy, D.K. Pandey, A. Dey (2021) Role of Fungal Metabolites as Biopesticides: an Emerging Trend in Sustainable Agriculture. Volatiles and Metabolites of Microbes, pp. 385-407, 10.1016/B978-0-12-824523-1.00014-6

Tadesse Mawcha K, Malinga L, Muir D, Jing Ge, Dennis Ndolo (2025) Recent Advances in Biopesticide Research and Development with a Focus on Microbials F1000Research 13:1071 https://doi.org/10.12688/f1000research.154392.4

Tao C, Wang Z, Liu S, Lu N, Deng X, Xiong W, Shen Z, Zhang N, Geisen S, Li R, Shen Q, & Kowalchuk GA (2023) Additive fungal interactions drive biocontrol of Fusarium wilt disease. New Phytol. doi: 10.1111/nph.18793.

Van Bruggen A.H.C., He M.M., Shin K., Mai V., Jeong K.C.,Finckh M.R., Morris J.G., Jr. (2018) Environmental and healtheffects of the herbicide glyphosate. Sci. TotalEnviron.; 616:255–268. doi: 10.1016/j.scitotenv.2017.10.309.

van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta- analysis of projected global food demand and population at risk of

hunger for the period 2010–2050. Nature Food, 2(7), 494-

501. https://doi.org/10.1038/s43016-021-00322-9

Vincent M, Simon L, Brabet P, Legrand P, Dorandeu C, Him JLK, Durand T, Crauste C, Begu S. Formulation and Evaluation of SNEDDS Loaded with Original Lipophenol for the Oral Route to Prevent Dry AMD and Stragardt's Disease. Pharmaceutics. 2022 May 10;14(5):1029. doi: 10.3390/pharmaceutics14051029. PMID: 35631617; PMCID: PMC9147958.

Vinzant K, Rashid M, and Khodakovskaya MV (2023) Advanced applications of sustainable and biological nano-polymers in agricultural production. Frontiers in Plant Science. 13, article 1081165

Wang, S., Mo, H., Xu, D., Hu, H., Hu, L., Shuai, L., & Li, H. (2021)

Determination of volatile organic compounds by HS‐GC‐IMS to detect different stages of Aspergillus flavus infection in Xiang Ling walnut. Food Science & Nutrition, 9(5), 2703– 2712.doi:10.1002/fsn3.2229

Xu M, Park JE, Lee J, Yang J, Yoon S. Plant disease recognition datasets in the age of deep learning: challenges and opportunities. Front Plant Sci. 2024 Sep 27;15:1452551. doi: 10.3389/fpls.2024.1452551. PMID: 39399537; PMCID: PMC11466843.

Yang J, Xu G, Yang M, Lin Z. Lightweight wavelet-CNN tea leaf disease detection. PLoS One. 2025 May 27;20(5):e0323322. doi: 10.1371/journal.pone.0323322. PMID: 40424373; PMCID: PMC12112342.

Yao, X.; Guo, H.; Zhang, K.; Zhao, M.; Ruan, J.; Chen, J. (2023) Trichoderma and its role in biological control of plant fungal and nematode disease. Front. Microbiol., 14, 1160551.

Youssef, F.S.; Alshammari, E.; Ashour, M.L. (2021). Bioactive alkaloids from genus Aspergillus: Mechanistic interpretation of their antimicrobial and potential SARS-CoV-2 inhibitory activity using molecular modelling. Int. J. Mol. Sci. 2, 1866. https://doi.org/10.3390/ijms22041866

Yuliantoro ID, Prihatiningrum AE, & Sutarman (2023) Exploration and Inhibition Test of Penicillium sp. In Vitro by Trichoderma. IOP Conf. Series: Earth and Environmental Science 1242 (2023) 012012. https://doi:10.1088/1755-1315/1242/1/012012

Zhang, J., Fu, B., Lin, Q., Riley, IT., Ding, S., Chen, L., Jiangkuan, C., Lirong, Y. & Li, H. (2020) Colonizationof Beauveria bassiana 08F04 in root-zone soil and its biocontrol of cereal cyst nematode (Heterodera filipjevi). PLoS ONE 15(5): e0232770. https://doi.org/10.1371/journal.pone.023277

Zhang, Q.; Li, W.; Han, X.; Wu, B.; Song, Z.; Shi, J. (2024) Plant glycerol suppresses brown rot of peach fruit by enhancing disease resistance. Physiol. Mol. Plant Pathol. 129, 102204

Zhou, S., Tong, Q., Pan, X., Cao, M., Wang, H., Gao, J., & Ou, X. (2021)

Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: A global perspective. Energy Economics, 95, 105137.

https://doi.org/10.1016/j.eneco.2021.105137

Zixuan Wu, Saikat Basu, Seungho Kim, Mark Sorrells, Francisco. Beron-Vera, Sunghwan Jung.(2024) Coherent spore dispersion via drop-leaf interaction. Adv. 10, eadj8092 .doi: 10.1126/sciadv.adj8092

Published

2025-06-24

How to Cite

Sutarman, S. (2025). Pemanfaatan Fungi Agen Hayati Bagi Pertanian Ramah Lingkungan Berkelanjutan. Umsida Press. Retrieved from https://press.umsida.ac.id/index.php/umsidapress/article/view/1518

Issue

Section

Monograph

Categories

Most read articles by the same author(s)