Biopestisida Nanopartikel Bioinokulan Fungi untuk Perlindungan Kesehatan Tanaman Hortikultur

  • Sutarman Sutarman Universitas Muhammadiyah Sidoarjo
  • Oktavia Eka Puspita Universitas Muhammadiyah Sidoarjo
  • Andriani Eko Prihatiningrum Universitas Muhammadiyah Sidoarjo
Keywords: biopesticide, nanoparticle, bioinoculant, fungi, horticulture

Abstract

Puji syukur kehadirat Allah SWT atas tersusunnya Buku dengan judul: “Biopestisida
Nanopartikel Bioinokulan Fungi untuk Perlindungan Kesehatan Tanaman Hortikultur” yang
merupakan salah satu luaran penelitian hibah Kemendikbudristek dalam skema Penelitian
Terapan 2024.
Buku ini disusun berdasarkan kajian referensi yang bersumber pada hasil riset yang
terpublikasi dalam berbagai artikel jurnal Internasional relevan terkait. Materi dalam buku
ini dapat digunakan sebagai bahan ajar dan kajian dalam mata kuliah Manajemen Budidaya
Tanaman Hortikultur, Pengelolaan Hamavdan Penyakit Tanaman, dan mata kuliah lain yang
relevan baik pada Prodi Agroteknologi maupun prodi lain dengan keminatan yang relevan.
Rerfeensi dalam buku ini dapat ditelusuri dan dimanfaatkan bagi kebutuhan riset dosen,tugas
akhir mahasiswa, dan bahan ajar mata kuliah lain.
Sustansi kajian dalam buku ini diharapkan dapat menjadi pertimbangan pemerhati,
pembelajar, periset, dan pemangku kepentingan lainnya dalam partisipasi menjawab
tantangan anomali iklim sebagai dampak pemanasan global sekaligus upaya mewujudkan
ketahanan pangan Nasional.
Pada kesempatan ini penulis menyampaikan terima kasih kepada: Direktorat Jendral
Pendidikan Tinggi Kemendikbudristek RI atas hibah Peneilitian Terapan 2024. Penghargaan
juga diberikan kepada Rektor Universitas Muhammadiyah Sidoarjo (UMSIDA) atas dukungan
moril dan fasilitas yang disediakan bagi kelancaran penelitian danpenyusunan buku ini.
Semoga karya ilmiah ini bermanfaat.

Downloads

Download data is not yet available.

References

[1] van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected
global food demand and population at risk of hunger for the period 2010–
2050. Nature Food, 2(7), 494-501. https://doi.org/10.1038/s43016-021-00322-9
[2] Pusat Data dan Informasi Pertanian. 2024. Statistik Konnsumsi Pangan Tahun 2023.
Sekretaris Jendral Kementrian Pertanan. Jakarta.
[3] Moulick, R.G.; Das, S.; Debnath, N.; Bandyopadhyay, K. Potential use of
nanotechnology in sustainable and ‘smart’ agriculture: Advancements made in the
last decade. Plant Biotechnol. Rep. 2020, 14, 505–513.]
[4] Chhipa, H. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett.
2017, 15, 15–22.
[5] Chi-Wei Huang, Chitsan Lin, Minh Ky Nguyen, Adnan Hussain, Xuan-Thanh
Bui, Huu Hao Ngo. A review of biosensor for environmental monitoring:
principle, application, and corresponding achievement of sustainable development
goals Bioengineered. 2023 Dec;14(1):58-80. doi:
10.1080/21655979.2022.2095089.
[6] Bhardwaj, A.K.; Arya, G.; Kumar, R.; Hamed, L.; Pirasteh-Anosheh, H.; Jasrotia, P.;
Kashyap, P.L.; Singh, G.P. Switching to nanonutrients for sustaining
agroecosystems and environment: The challenges and benefits in moving up from
ionic to particle feeding. J. Nanobiotechnol. 2022, 20, 19.
[7] An, C.; Sun, C.; Li, N.; Huang, B.; Jiang, J.; Shen, Y.; Wang, C.; Zhao, X.; Cui, B.; Wang,
C.; et al. Nanomaterials and nanotechnology for the delivery of agrochemicals:
Strategies towards sustainable agriculture. J. Nanobiotechnol. 2022, 20, 11.
[8] Barkha Devi, Ranjita Devi, Shrijana Pradhan, Nazung Lepcha. 2022. Theory at a
glance: Health belief models in predicting health behaviors. J.Bio.Innov11(2), pp:
410-421, 2022. https://doi.org/10.46344/JBINO.2022.v11i02.13
[9] Rajput, V.D.; Singh, A.; Minkina, T.; Rawat, S.; Mandzhieva, S.; Sushkova, S.; Shuvaeva,
V.; Nazarenko, O.; Rajput, P.; Komariah; et al. Nano-enabled products: Challenges
and opportunities for sustainable agriculture. Plants 2021, 10, 2727.
[10] Khan, S.T.; Adil, S.F.; Shaik, M.R.; Alkhathlan, H.Z.; Khan, M.; Khan, M. Engineered
nanomaterials in soil: Their impact on soil microbiome and plant health. Plants
2022, 11, 109.
[11] Itelima, J.U., W. J. Bang, M. D. Sila, I. A. Onyimba & O. J. Egbere. 2018. A Review:
Biofertilizer; A Key Player in Enhancing Soil Fertility and Crop Productivity. J
Microbiol. 2 (1): 74–83.
[12] Van Bruggen A.H.C., He M.M., Shin K., Mai V., Jeong

51

K.C.,Finckh M.R., Morris J.G., Jr. Environmental and healtheffects of the
herbicide glyphosate. Sci. TotalEnviron. 2018;616:255–268. doi:
10.1016/j.scitotenv.2017.10.309.
[13] Chechi, A., Stahlecker, J., Dowling, M. E., & Schnabel, G., 2019. Diversity inspecies
composition and fungicide resistance profiles in Colletotrichum isolates from apples.
Pesticide Biochemistry and Physiology.
https://doi.org/10.1016/j.pestbp.2019.04.002.
[14] Jallow MFA., Awadh, DG., Albaho, MS., Devi, VY. & Thomas, BM., 2017. Pesticide
knowledge and safety practices among farm workers in Kuwait: results of a
survey. Int. J. Environ. Res. Public Health. 14 (4): 340.
[15] Arora S, Murmu G, Mukherjee K, Saha S, and Maity D. A comprehensive overview of
nanotechnology in sustainable agriculture. Journal of Biotechnology. 2022; vol.
355, pp. 21–41.
[16] An C, Sun C, Li N et al. Nanomaterials and nanotechnology for the delivery of
agrochemicals: strategies towards sustainable agriculture. Journal of
Nanobiotechnology.2022; vol. 20, no. 1, p. 11.
[17] Kaur R, Bhardwaj G, Saini S, Kaur N, and Singh N. A high-performance Calix@ZnO
based bifunctional nanomaterial for selective detection and degradation of toxic
azinphos methyl in environmental samples. 2023; Chemosphere, vol. 316, article
137693.
[18] Pavlicevic M, Abdelraheem W, Zuverza-Mena N et al. Engineered nanoparticles,
natural nanoclay and biochar, ascarriers of plant-growth promoting bacteria.
Nanomaterials. 2022; vol. 12, no. 24, p. 4474.
[19] Zand AD, Tabrizi AM, and Vaezi Heir AJB. Application of titanium dioxide
nanoparticles to promote phytoremediation of Cd-polluted soil: contribution of
PGPR inoculation. Bioremediation Journal. 2020; vol. 24, no. 2-3, pp. 171-189.
[20] Tao C, Wang Z, Liu S, Lu N, Deng X, Xiong W, Shen Z, Zhang N, Geisen S, Li
R, Shen Q, & Kowalchuk GA. Additive fungal interactions drive biocontrol of
Fusarium wilt disease. New Phytol. 2023; doi: 10.1111/nph.18793.
[21] López AC, Giorgio EM, Vereschuk ML, Zapata PD, Luna MF, & Alvarenga. Ilex
paraguariensis hosts root-Trichoderma spp. with plant-growth-promoting traits:
Characterization as biological control agents and biofertilizers. Curr
Microbiol. 2023; 80(4):120. doi: 10.1007/s00284-023-03231-1.
[22] Vinzant K, Rashid M, and Khodakovskaya MV. Advanced applications of sustainable
and biological nano-polymers in agricultural production. Frontiers in Plant
Science.2023; vol. 13, article 1081165.
[23] Ansari M, Ahmed S, Abbasi A, Hamad NA, Ali HM, Khan MT, Haq IU, Zaman QU

51

(2023) Green synthesized silver nanoparticles: a novel approach for the enhanced
growth and yield of tomato bagainst early blight disease. Microorganisms
11(4):886. https://doi. org/ 10. 3390/ micro organ isms1 10408 86
[24] Kumar, A., Verma, L. M., Sharma, S., and Singh, N. (2022). Overview on Agricultural
Potentials of Biogas Slurry (BGS): Applications, Challenges, and Solutions.
Springer Berlin, Heidelberg 1–41.
[25] Gulzar ABM and Mazumder PB. Helping plants to deal with heavy metal stress: the
role of nanotechnology and plant growth promoting rhizobacteria in the process of
phytoremediation. Environmental Science and Pollution Research International.
2022; vol. 29, no. 27, pp. 40319–40341.
[26] Pallavi MCM, Srivastava R, Arora S, and Sharma AK. Impact assessment of silver
nanoparticles on plant growth and soil bacterial diversity. 3 Biotech, vol. 6, pp. 1–
10, 2016.
[27] Ferrusquía-Jiménez NI, González-Arias B, Rosales A et al. Elicitation of Bacillus
cereus-Amazcala (B.c-A) with SiO2 nanoparticles improves its role as a plant
growth-promoting bacteria (PGPB) in chili pepper plants. Plants. 2022; vol. 11,
no. 24, p. 3445.
[28] de Moraes ACP, Ribeiro LDS, de Camargo ER, and Lacava PT. The potential of
nanomaterials associated with plant growth-promoting bacteria in agriculture. 3
Biotech. 2021; vol. 11, no. 7, p. 318, 2021.
[29] Das PP, Singh KR, Nagpure G et al. Plant-soil-microbes: a tripartite interaction for
nutrient acquisition and better plant growth for sustainable agricultural practices.
Environmental Research. 2022; vol. 214, Part 1, p. 113821.
[30] Qiu Z, Paungfoo-Lonhienne C, Ye J et al. Biofertilizers can enhance nitrogen use
efficiency of sugarcane. Environmental Microbiology. 2022; vol. 24, no. 8, pp.
3655-3671.
[31] Foumani FAS, Soltani MS, Zomorodi S, Jafarian S, and Khosrowshahi AA. Effect of
chia seed mucilage coating containing zinc oxide nanoparticleson shelf life of
chicken fillet. Veterinary Research Forum. 2022; vol. 13, no. 4, pp. 577-585.
[32] Avram A, Rapuntean S, Gorea M et al. In vitro antibacterial effect of forsterite
nanopowder: synthesis and characterization. Environmental Science and Pollution
Research International. 2022; vol. 29, no. 51, pp. 77097-77112.
[33] Prasad R, Bhattacharyya A, and Nguyen QD Nanotechnology in sustainable
agriculture: recent developments, challenges, and perspectives. Frontiers in
Microbiology. 2017; vol. 8, p. 1014.
[34] Haris M, Hussain T, Mohamed HI et al. Nanotechnology - a new frontier of nano-
farming in agricultural and food production and its development. Science of the
Total Environment. 2023; vol. 857, Part 3, article 159639, 2023.
Published
2024-11-29
How to Cite
Sutarman, S., Puspita, O. E., & Prihatiningrum, A. E. (2024). Biopestisida Nanopartikel Bioinokulan Fungi untuk Perlindungan Kesehatan Tanaman Hortikultur. Umsida Press, 1 - 83. Retrieved from https://press.umsida.ac.id/index.php/umsidapress/article/view/1498
Issue
Section
Reference Book

Most read articles by the same author(s)