Manajemen Operasional Utilitas Air Minum Perpipaan Dalam Pengendalian Non-Revenue Water
Abstract
Judul : Manajemen Operasional Utilitas Air Minum Perpipaan Dalam Pengendalian Non-Revenue Water
- BAB I Audit Neraca Air
- BAB II Faktor-Faktor Penentu NRW
- BAB III Strategi Pengendalian NRW
- BAB IV Risk Assessment Pengendalian NRW
Editor: M.Tanzil Multazam & Mahardika Darmawan Kusuma Wardana
Published by:
Universitas Muhammadiyah Sidoarjo Press, Sidoarjo, 2024
ISBN:
- ISBN
Deskripsi :
Manajemen operasional utilitas air minum perpipaan merupakan serangkaian kegiatan teknis dan administratif yang bertujuan untuk memastikan distribusi air bersih kepada pelanggan secara efisien dan berkelanjutan.
Fokus Utama :
- Identifikasi dan Klasifikasi Komponen NRW
Menelusuri sumber-sumber utama kehilangan air, baik yang bersifat fisik (seperti kebocoran pada pipa) maupun non-fisik (seperti pencatatan meteran yang salah atau pencurian air).
Fitur Unik :
· Interseksi antara Teknologi, Infrastruktur, dan ManajemenTopik ini tidak hanya membahas aspek teknis seperti jaringan perpipaan dan kebocoran, tetapi juga mencakup teknologi informasi (smart metering, SCADA, IoT) serta aspek manajerial seperti pengambilan keputusan berbasis data dan strategi keuangan.
Target Audiens :
- Pengelola dan Operator Utilitas Air Minum (PDAM atau PUDAM)
Mereka adalah pihak yang secara langsung terlibat dalam operasional, pemeliharaan jaringan perpipaan, serta penagihan pelanggan. Informasi dan strategi dari studi ini akan sangat relevan bagi:
- Kepala bagian distribusi,
- Tim teknis pemantauan kebocoran
- Pemerintah Daerah dan Lembaga Regulator
Khususnya dinas yang menangani infrastruktur dan sumber daya air, seperti:
- Dinas Pekerjaan Umum dan Penataan Ruang (PUPR),
- Badan Pengelola Air Minum dan Sanitasi,
Mereka berperan penting dalam menetapkan kebijakan, pengawasan, serta penyusunan regulasi teknis yang mendorong efisiensi dan akuntabilitas pengelolaan air.
Downloads
References
Amir, A., Fauzi, R. and Arifin, Y. (2022) ‘Smart water meter for automatic meter reading’, IOP Conference Series: Materials Science and Engineering, 1212(1), p. 12042. doi: 10.1088/1757-899X/1212/1/012042.
Anbari, M.J., Tabesh, M. and Roozbahani, A. (2017) ‘Risk assessment model to prioritize sewer pipes inspection in wastewater collection networks’, Journal of Environmental Management, 190, pp. 91–101. Available at: https://doi.org/10.1016/j.jenvman.2016.12.052.
Aydogdu, M. and Firat, M. (2015) ‘Estimation of Failure Rate in Water Distribution Network Using Fuzzy Clustering and LS-SVM Methods’, Water Resource Management, 29(5), pp. 1575–1590. Available at: https://doi.org/https://doi.org/10.1007/s11269-014-0895-5.
Balaei, B. et al. (2019) ‘Social factors affecting water supply resilience to disasters’, International Journal of Disaster Risk Reduction, 37, p. 101187. doi: https://doi.org/10.1016/j.ijdrr.2019.101187.
Barandouzi, M.A. et al. (2012) ‘Probabilistic Mapping of Water Leakage Characterizations Using a Bayesian Approach’, World Environmental and Water Resources Congress 2012 [Preprint]. American Society of Civil Engineers.
van den Berg, C. (2015) ‘Drivers of non-revenue water: A cross-national analysis’, Utilities Policy, 36, pp. 71–78. Available at: https://doi.org/10.1016/j.jup.2015.07.005.
Bezerra, S.T.M., Da Silva, S.A. and Gomes, H.P. (2012) ‘Operational optimisation of water supply networks using a fuzzy system’, Water SA, 38(4). Available at: https://doi.org/10.4314/wsa.v38i4.12.
Caputo, A. et al. (2022) ‘Water Conservation and Environmental Sustainability from a Community Clinical Psychological Perspective’, Sustainability. doi: 10.3390/su14159146.
Chasiotis, A. et al. (2023) ‘Design of a Smart Early Warning Hydrometeorological System: The Easy Project in Ermionida’, Environmental Sciences Proceedings. doi: 10.3390/environsciproc2023026185.
Christodoulou, S. and Deligianni, A. (2010) ‘Neurofuzzy decision framework for the management of water distribution networks’, Water Resources Management [Preprint]. Available at: https://doi.org/10.1007/s11269-009-9441-2.
Costa de Oliveira, J. et al. (2017) ‘Fuzzy control applied to water distribution systems with a view to reducing the waste of water and energy’, Acta Universitaria, 27(2), pp. 24–31. Available at: https://doi.org/10.15174/au.2017.1023.
Dolan, F. et al. (2021) ‘Evaluating the economic impact of water scarcity in a changing world’, Nature Communications, 12(1), p. 1915. doi: 10.1038/s41467-021-22194-0.
Elmasry, M., Hawari, A. and Zayed, T. (2017) ‘Defect based deterioration model for sewer pipelines using Bayesian belief networks’, Canadian Journal of Civil Engineering, 44(9), pp. 675–690. Available at: https://doi.org/10.1139/cjce-2016-0592.
Farley, M. et al. (2008) ‘The Manager’s Non-Revenue Water Handbook’, A Guide to Understanding Water Losses, Ranhill Utilities Bernhad and USAID, Malaysia.
Farley, M. and Liemberger, R. (2005) ‘Developing a non-revenue water reduction strategy: Planning and implementing the strategy’, in Water Science and Technology: Water Supply. Available at: https://doi.org/10.2166/ws.2005.0006.
Farley, M. and Trow, S. (2015) ‘Losses in Water Distribution Networks: A Practitioners’ Guide to Assessment, Monitoring and Control’, Water Intelligence Online, 4(0), pp. 9781780402642–9781780402642. Available at: https://doi.org/10.2166/9781780402642.
Firat, M., Turan, M.E. and Yurdusev, M.A. (2009) ‘Comparative analysis of fuzzy inference systems for water consumption time series prediction’, Journal of Hydrology, 374(3–4), pp. 235–241. Available at: https://doi.org/10.1016/j.jhydrol.2009.06.013.
Francis, R.A., Guikema, S.D. and Henneman, L. (2014) ‘Bayesian Belief Networks for predicting drinking water distribution system pipe breaks’, Reliability Engineering & System Safety, 130, pp. 1–11. Available at: https://doi.org/10.1016/j.ress.2014.04.024.
Haider, H., Sadiq, R. and Tesfamariam, S. (2015) ‘Multilevel performance management framework for small to medium sized water utilities in Canada’, Canadian Journal of Civil Engineering, 42(11), pp. 889–900. Available at: https://doi.org/10.1139/cjce-2015-0227.
Hall, D.C. and Le, Q.B. (2017) ‘Use of Bayesian networks in predicting contamination of drinking water with E. coli in rural Vietnam’, Transactions of The Royal Society of Tropical Medicine and Hygiene, 111(6), pp. 270–277. Available at: https://doi.org/10.1093/trstmh/trx043.
Islam, M.S. et al. (2011) ‘Leakage detection and location in water distribution systems using a fuzzy-based methodology’, Urban Water Journal, 8(6), pp. 351–365.
Jang, D. (2018) ‘A Parameter Classification System for Nonrevenue Water Management in Water Distribution Networks’, Advances in Civil Engineering. Available at: https://doi.org/10.1155/2018/3841979.
Jang, D. and Choi, G. (2017a) ‘Estimation of non-revenue water ratio for sustainable management using artificial neural network and Z-score in Incheon, Republic of Korea’, Sustainability (Switzerland) [Preprint]. Available at: https://doi.org/10.3390/su9111933.
Jang, D. and Choi, G. (2017b) ‘Estimation of non-revenue water ratio using MRA and ANN in water distribution networks’, Water (Switzerland) [Preprint]. Available at: https://doi.org/10.3390/w10010002.
Jang, D., Park, H. and Choi, G. (2018) ‘Estimation of leakage ratio using principal component analysis and artificial neural network in water distribution systems’, Sustainability (Switzerland) [Preprint]. Available at: https://doi.org/10.3390/su10030750.
Kabir, G. et al. (2015) ‘Evaluating risk of water mains failure using a Bayesian belief network model’, European Journal of Operational Research, 240(1), pp. 220–234.
Kabir, G., Tesfamariam, S. and Sadiq, R. (2015) ‘Predicting water main failures using Bayesian model averaging and survival modelling approach’, Reliability Engineering & System Safety, 142, pp. 498–514. Available at: https://doi.org/10.1016/j.ress.2015.06.011.
Kamani, H. et al. (2012) ‘Management of Non-Revenue Water in Distribution Network and Conveyor Lines; a Case Study’, Health Scope, 1(3), pp. 147–152.
Kanakoudis, V. et al. (2015) ‘Defining the level of the Non-Revenue Water in Kozani, Greece: is it a typical case?’, Desalination and Water Treatment.
Kleiner, Y., Rajani, B. and Sadiq, R. (2006) ‘Failure risk management of buried infrastructure using fuzzy-based techniques’, Journal of Water Supply: Research and Technology - Aqua, 55(2), pp. 81–94. Available at: https://doi.org/10.2166/aqua.2006.075.
Kleiner, Y., Sadiq, R. and Rajani, B. (2004) ‘Modeling Failure Risk in Buried Pipes Using Fuzzy Markov Deterioration Process’, Pipeline Engineering and Construction. American Society of Civil Engineers. Available at: https://doi.org/10.1061/40745(146)7.
Korb, K.B. and Nicholson, A.E. (2003) ‘Bayesian Artificial Intelligence’. Chapman and Hall/CRC. Available at: https://doi.org/10.1201/9780203491294.
Kumar, V., Sunder, S. and Sharma, A. (2015) ‘Leveraging Distribution to Maximize Firm Performance in Emerging Markets’, Journal of Retailing. Available at: https://doi.org/10.1016/j.jretai.2014.08.005.
Kusena, W. et al. (2016) ‘Assessing public participation in water conservation and water demand management in water stressed urban areas: Insights from the City of Gweru, Zimbabwe’, Review of Social Sciences, 1, p. 30. doi: 10.18533/rss.v1i8.51.
Leu, S.-S. and Bui, Q.-N. (2016) ‘Leak Prediction Model for Water Distribution Networks Created Using a Bayesian Network Learning Approach’, Water Resources Management, 30(8), pp. 2719–2733. Available at: https://doi.org/10.1007/s11269-016-1316-8.
Liemberger, R. et al. (2016) ‘Zambia Water Supply and Sanitation Sector Diagnostic’, International Journal of Water Resources Development, 15(3), pp. 1–8.
Liemberger, R. and Farley, M. (2004) ‘Developing a Non-Revenue Water Reduction Strategy Part 1 : Investigating and Assessing Water Losses’, Proc IWA 4th World Water Congress and Exhibition 1924 September 2004 Marrakech Morocco [Preprint].
Lima, S., Brochado, A. and Marques, R. C. (2021) ‘Public-private partnerships in the water sector: A review’, Utilities Policy, 69, p. 101182. doi: https://doi.org/10.1016/j.jup.2021.101182.
Loureiro, D. et al. (2015) ‘Water distribution systems flow monitoring and anomalous event detection: A practical approach’, Urban Water Journal, 13(3), pp. 242–252.
Magiera, E. and Froelich, W. (2015) ‘Application of Bayesian Networks to the Forecasting of Daily Water Demand’, Intelligent Decision Technologies. Springer International Publishing, pp. 385–393. Available at: https://doi.org/10.1007/978-3-319-19857-6_34.
Martínez-Codina, Á. et al. (2015) ‘Use of Pressure Management to Reduce the Probability of Pipe Breaks: A Bayesian Approach’, Journal of Water Resources Planning and Management, 141(9). Available at: https://doi.org/10.1061/(asce)wr.1943-5452.0000519.
Marzouk, M. and Ahmed, O. (2017) ‘Fuzzy-based methodology for integrated infrastructure asset management’, International Journal of Computational Intelligence Systems, 10(1), p. 745.
Masheka, G. (2016). An Optimisation of Non Revenue Water Management for Livingstone Town, Zambia; University of Zimbabwe
Moczulski, W. et al. (2016) ‘A methodology of leakage detection and location in water distribution networks — The case study’, 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol). IEEE.
Motiee, H. and Ghasemnejad, S. (2019) ‘Prediction of pipe failure rate in Tehran water distribution networks by applying regression models’, Water Supply, 19(3), pp. 695–702.
Mukherjee, M., Chindarkar, N. and Grönwall, J. (2014) ‘Non-revenue water and cost recovery in urban India: the case of Bangalore’, Water Policy, 17(3), pp. 484–501.
Murrar, A. (2017) ‘The Determinants of Non-Revenue Water in Balkan Countries’, American Journal of Water Science and Engineering, 3(2), p. 18.
Mutikanga, H.E, Sharma, S.K. and Vairavamoorthy, K. (2011a) ‘Investigating water meter performance in developing countries: A case study of Kampala, Uganda’, Water SA, 37(4). Available at: https://doi.org/10.4314/wsa.v37i4.18.
Mutikanga, H.E, Sharma, S.K. and Vairavamoorthy, K. (2011b) ‘Multi-criteria Decision Analysis: A Strategic Planning Tool for Water Loss Management’, Water Resources Management, 25(14), pp. 3947–3969. Available at: https://doi.org/10.1007/s11269-011-9896-9.
Nannapaneni, S., Mahadevan, S. and Rachuri, S. (2016) ‘Performance evaluation of a manufacturing process under uncertainty using Bayesian networks’, Journal of Cleaner Production, 113, pp. 947–959. Available at: https://doi.org/10.1016/j.jclepro.2015.12.003.
Nugroho, W. and Iriawan, N. (2019) ‘Effect of the leakage location pattern on the speed of recovery in water supply networks’, in Journal of Physics: Conference Series. Available at: https://doi.org/10.1088/1742-6596/1402/2/022023.
Nugroho, W., Iriawan, N. and Utomo, C. (2021) ‘Determining physical and operational factors influencing pipeline leakage location pattern in water distribution networks using spatial poisson point process’, in IOP Conference Series: Materials Science and Engineering, Chemical Engineering. {IOP} Publishing, p. 22051. Available at: https://doi.org/10.1088/1757-899x/1098/2/022051.
Nugroho, W., Utomo, C. and Iriawan, N. (2022) ‘A Bayesian Pipe Failure Prediction for Optimizing Pipe Renewal Time in Water Distribution Networks’, Infrastructures, 7(10). Available at: https://doi.org/10.3390/infrastructures7100136.
Nugroho, W., Utomo, C. and Iriawan, N. (2023) ‘A spatial data-driven decision analysis of pipe failure management in water supply system’, AIP Conference Proceedings, 2646(1), p. 50029. doi: 10.1063/5.0139420.
Owiti, C.K (2013). Factors influencing Non Revenue Water in Garissa Township; University of Nairobi
Pradana, A.F., Yuniarto, A. (2023) ‘Analisis Kehilangan Air dengan Metode Neraca Air dan Infrastructure Leakage Index (ILI) pada PDAM Surya Sembada Kota Surabaya’, Jukung : Jurnal Teknik Lingkungan, 9(1), pp. 103–112.
Refsdal, A., Solhaug, B. and Stølen, K. (2015) ‘Risk identification’, in SpringerBriefs in Computer Science. Available at: https://doi.org/10.1007/978-3-319-23570-7_7.
Rizzo, P. (2010) ‘Water and Wastewater Pipe Nondestructive Evaluation and Health Monitoring: A Review’, Advances in Civil Engineering, 2010, pp. 1–13. Available at: https://doi.org/10.1155/2010/818597.
Safeer, S. et al. (2022) ‘A review of artificial intelligence in water purification and wastewater treatment: Recent advancements’, Journal of Water Process Engineering, 49, p. 102974. doi: https://doi.org/10.1016/j.jwpe.2022.102974.
Schwartz, K., Tutusaus, M. and Savelli, E. (2017) ‘Water for the urban poor: Balancing financial and social objectives through service differentiation in the Kenyan water sector’, Utilities Policy, 48, pp. 22–31. Available at: https://doi.org/10.1016/j.jup.2017.08.001.
Shilehwa, C.M., Makhanu, S.K. and Khaemba, A.W. (2019) ‘Application of Artificial Neural Network Model In Forecasting Water Demand: Case of Kimilili Water Supply Scheme, Kenya’, International Journal of Civil Engineering, 6(9), pp. 6–11.
Sihombing, N. H. et al. (2024) ‘The Cost Assessment in Water Infrastructure Within the Framework of Circular Economy: A Bibliometric Analysis BT - Advances in Civil Engineering Materials’, in Nia, E. M. and Awang, M. (eds). Singapore: Springer Nature Singapore, pp. 325–333.
Srivastava, P. and Yaduvanshi, A. (2016) ‘Challenges in Geospatial Technology for Water Resources Development’, in, pp. 289–301.
Tabesh, M. et al. (2009) ‘Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modeling’, Journal of Hydroinformatics, 11(1), pp. 1–17. Available at: https://doi.org/10.2166/hydro.2009.008.
Tang, C. et al. (2016) ‘Risk forecasting of pollution accidents based on an integrated Bayesian Network and water quality model for the South to North Water Transfer Project’, Ecological Engineering, 96, pp. 109–116.
Thomsen, N.I. et al. (2016) ‘A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites’, Journal of Contaminant Hydrology, 188, pp. 12–28.
Wachla, D., Przystalka, P. and Moczulski, W. (2015) ‘A Method of Leakage Location in Water Distribution Networks using Artificial Neuro-Fuzzy System’, IFAC-PapersOnLine, 48(21), pp. 1216–1223.
Wang, C. et al. (2010) ‘An assessment model of water pipe condition using Bayesian inference’, Journal of Zhejiang University-SCIENCE A, 11(7), pp. 495–504.
Wang, Y. and Huo, D.Y. (2014) ‘Constant Pressure Water Supply System Based on Fuzzy Control Technology’, Applied Mechanics and Materials, 511–512, pp. 1110–1113.
Wells, G. (1996) Hazard identification and risk assessment, Hazard identification and risk assessment. Available at: https://doi.org/10.1201/9780429280740-13.
Yeboah, P.A (2008). Management of Non Revenue Water : A Case Study of Water Supply in Accra, Ghana; University of Loughbourough
Ziemendorff, S. (2021) Smart Water Management - Digital applications to reduce non-revenue water and increase the energy efficiency of water utilities in countries with emerging markets and developing economies.
Zou, P.X.W., Zhang, G. and Wang, J. (1993) ‘Identifying Key Risks in Construction Projects : Life Cycle and Stakeholder Perspectives Related Past Research and Risk Classification’, Architecture.
Zyoud, S.H. et al. (2016) ‘A framework for water loss management in developing countries under fuzzy environment: Integration of Fuzzy AHP with Fuzzy TOPSIS’, Expert Systems with Applications, 61, pp. 86–105.

Copyright (c) 2025 Rita Ambarwati S, Widyo Nugroho, Wiwik Sulistiyowati, Kusno Kusno

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the Umsida Press right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this platform.