2019
Buku Ajar

Mikrobiologi Tanah


Sutarman
Universitas Muhammadiyah Sidoarjo, Indonesia
Picture in here are illustration from public domain image or provided by the author, as part of their works
Published August 28, 2021
Keywords
  • Mikrobiologi,
  • Tanah
How to Cite
Sutarman. (2021). Mikrobiologi Tanah . Umsida Press, 1-55. https://doi.org/10.21070/2019/978-602-5914-96-6

Abstract

Buku ini disusun berdasarkan hasil kajian literatur yang bersumber pada berbagai artikel jurnal nasional dan Internasional relevan terkait serta merupakan salah satu luaran Hibah Kemenristekdikti dalam skema Penelitian Terapan Unggulan Perguruan Tinggi 2018-2019.Buku selain dapat digunakan sebagai materi kuliah Kesuburan Tanah dan Pengelolaan Pupuk, juga dapat dimanfaatkan bagi bahan ajar mata kuliah Bioteknologi Pertanian mengingat di dalmnya terdapat Bab mengenai agensia biofertilizer dan agensia biokontrol serta bioteknologi tanah.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. AlAskar AA & Rashad YM. 2010. Arbuscular mycorrhizal fungi: a biocontrol agent against common bean Fusarium root rot disease. Plant Pathol. J. 9, 31–38.
  2. Alguacil MM, Torrecillas E, García-Orenes F & Roldán A. 2014. Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biol. Biochem. 76, 34–44.
  3. Al-Taweil HI, Osman MB, Aidil AH & Wan-Yussof WM. 2009. Optimizing of Trichoderma viride cultivation in submerged state fermentation. Am. J. Appl. Sci. 6, 1277–1281.
  4. Altieri MA & Nicholis C.I. 2005. Agroecology and the Search for a Truly Sustainable Agriculture. Mexico. United Nations Environments Programme.
  5. Bai C, He X, Tang H, Shan B & Zhao L. 2009. Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us sandland, China. Soil Biol. Biochem. 41, 941–947.
  6. Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz-García A, Estrada B, Azcón R, Ferrol N. & Azcón-Aguilar C. 2011. Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J. Arid Environ. 75, 1292–1301.
  7. Bedini S, Avio L, Argese E & Giovannetti M. 2007. Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agric. Ecosyst. Environ. 120, 463–466.
  8. Benítez T, Rincón AM, Limón MC & Codon A. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7 (4), 249–260.
  9. Buysens C, César V, Ferrais F, De Boulois HD & Declerck S. 2016. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Applied Soil Ecology 105,137–143.
  10. Camenzind T, Homeier J, Dietrich K, Hempel S, Hertel D, Krohn A, Leuschner C, Oelmann Y, Olsson PA, Suarez JP & Rillig MC. 2016. Opposing effects of nitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biology & Biochemistry 94, 37-47.
  11. Cavallazzi JRP, Filho OK, Stürmer SL, Rygiewicz PT & de Mendonça MM. 2007. Screening and selecting arbuscular mycorrhizal fungi for inoculating micropropagated apple rootstocks in acid soils. Plant Cell Tissue Organ Cult. 90, 117–129. doi:http://dx.doi.org/10.1007/s11240-006-9163-6.
  12. Chowdappa P, Kumar SPM, Lakshmi MJ & Upreti KK. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol. Control 65, 109–117.
  13. Dix NJ & Webster J. 1995. Fungal ecology. Chapman & Hall. London.
  14. Driver JD, Holben WE & Rillig MC. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 37, 101–106.
  15. Dubey SC, Suresha M, & Singha B. 2007. Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol. Control 40, 118–127
  16. Dwidjoseputro D. 2005. Dasar-dasar mikrobiologi. Jambatan. Jakarta.
  17. Foyer CH & Noctor G. 2004. Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Kluwer Academic Publisher. London.
  18. Geisseler D & Horwath WR. 2009. Relationship between carbon and nitrogen availability and extracellular enzyme activities in soil. Pedobiologia 53, 87–98.
  19. Gerbore J, Benhamou N, Vallance J, Le Floch G, Grizard D, Regnault-Roger, C & Rey P. 2014. Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environ. Sci. Pollut. Res. Int. 21, 4847–4860.
  20. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D & Wipf D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 519–530.
  21. Gravel V, Antoun H & Tweddell RJ. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol. Biochem. 39, 1968–1977.
  22. Griffin DH. 1994. Fungal physiology. 2nd ed. Willey-Liss, Inc. New York.
  23. Harman GE. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96, 190–194.
  24. Heinemeyer A, Hartley IP, Evans SP, Carreira De La Fuente JA & Ineson P. 2007. Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Glob. Change Biol. 13, 1786–1797. doi:http://dx.doi.org/10.1111/j.1365-2486.2007.01383.x.
  25. Howell CR. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87, 4–10
  26. Hu X, Roberts DP, Xie L, Yu C, Li Y, Qin L, Hu L, Zhang Y, & Liao X. 2016. Use of formulated Trichoderma sp. Tri-1 in combination with reducedrates of chemical pesticide for control of Sclerotinia sclerotiorium on oilseed rape. Crop Protection 79, 124-127.
  27. Jindapunnapat K, Chinnasri B & Kwankuae S. 2013. Biological control of Root-knot nematodes (Meloidogyne enterolobii) in guava by the fungus Trichoderma harzianum. J. Dev. Sustainable Agric. 8, 110–118.
  28. Kuzyakov Y & Larionova AA. 2005. Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J. Plant Nutr. Soil Sci. 168, 503–520. doi:http://dx.doi.org/10.1002/jpln.200421703.
  29. Legaya N, Grassein F, Binet MN, Arnoldi C, Personeni E, Perigon S, Polyd F, Pommier T, Puissant J, Clément JC, Lavorel S & Mouhamadou B. 2016. Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonisation and soil bacterial activities. Applied Soil Ecology 98, 132–139.
  30. Lichtfouse, E. 2010. Sustainable Agriculture Reviews 3. Sociology, Organic Farming, Climate Change, and Soil Science. Netherlands. Springer.
  31. Lievens, B., Brouwer, M., Vanachter, A.C.R.C., Cammue, B.P.A., Thomma, B.P.H.J., 2006. Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plants Sci. 171, 155–165.
  32. Martinson GO, Corre MD & Veldkamp E. 2013. Responses of nitrous oxide fluxes and soil nitrogen cycling to nutrient additions in montane forests along an elevation gradient in southern Ecuador. Biogeochemistry 112, 625-636.
  33. Moyano F, Kutsch W & Schulze E. 2007. Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biol. Biochem. 39, 843–853. doi:http://dx.doi.org/10.1016/j.soilbio.2006.10.001.
  34. Noortasiah, 2005. Pemanfaatan Bakteri Rhizobium pada tanaman kedelai di lahan lebak. Buletin Teknik Pertanian, 10 (2): 57-60.
  35. Nottingham AT, Turner BL, Winter K, van der Heijden MGA & Tanner EVJ. 2010. Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytol. 186, 957–967. doi:http://dx.doi.org/10.1111/j.1469-8137.2010.03226.x.
  36. Paul EA & Clarck FE. 1996. Soil microbiology and biochemistry 2nd ed. Academic Press. San Diego.
  37. Pruksakorna P, Araia M, Kotokua N, Vilchèze C,. Baughn AD, Moodley P, Jacobs WR Jr. & Kobayashia M. 2010. Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorganic & Medicinal Chemistry Letters 20 (12): 3658–3663
  38. Purwaningsih, S. 2005. Rhizobium dari tanah kebun biologi Wamena. Biodiversitas. 6(2): 82-84.
  39. Read D & Perez-Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? New Phytologist 157, 475-492.
  40. Richardson A, Lynch J, Ryan P, Delhaize E, Smith FA, Smith SE, Harvey P, Ryan M, Venklaas E, Lambers H, Oberson A, Culvenor R & Simpson R. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil 349, 121-156.
  41. Rillig MC, Wright SF, Nichols KA, Schmidt WF & Torn MS. 2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233, 167–177.
  42. Sahebani N & Hadavi N. 2008. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol. Biochem. 40, 2016 2020.
  43. Samuels GJ. 2006. Trichoderma: Systematics, the Sexual State, and Ecology. Phytopathology 96 (2): 195-206.
  44. Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Monoharan PT & Rajendran A. 2009. Effect of single application of Trichoderma viride and Pseudomonas fluorences on growth promotion in cotton plants. Afr. J. Agric. Res. 4, 1220–1225.
  45. Saravanakumar K, Yu C, Dou K, Wang M, Li Y & Chen J. 2016. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biological Control 94 (2016) 37–46.
  46. Singh B, Kaur R & Singh K. 2008. Characterization of Rhizobium strain isolated from the roots of Trigonella foenumgraecum (fenugreek). African Journal of Biotechnology. 7 (20): 3671- 3676.
  47. Six J, Elliott ET & Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103.
  48. Smith SE & Smith FA. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62, 227-250.
  49. Srivastava R., Khalid A, Singh US & Sharma AK. 2010. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianumformulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biological Control 55, 24-31.
  50. Steinberg PD & Rillig MC. 2003. Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biol. Biochem. 35, 191–194.
  51. Sullivan, P. 2003. Applying the Principles of Sustainable Farming. Fundamental of Sustainable Agriculture. ATTRA.
  52. Suriadikarta DA & Simanungkalit RDM. 2006. Pendahuluan. In: Simanungkalit RDM, Suriadikarta DA, Saraswati R, Setyorini D & Hartatik W (eds.). Pupuk organic dan pupuk hayati. Pp. 1-10. Balai Besar Litbang Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian. Bogor.
  53. Sutarman. 1997. Effect of compost to intensity of mychorryzal infection on the roots of Pinus merkusii. J. Agritek 5 (2): 79-90.
  54. Sutarman, S. Hadi, A. Suryani, Achmad, & A. Saefuddin. 2004. Patogenesis hawar daun bibit Pinus merkusii yang disebabkan oleh Pestalotia theae di pesemaian. J. Hama dan Penyakit Tumbuhan Tropika 4(1): 32-41.
  55. Sutarman & Prihartiningrum AE. 2015. Penyakit hawar daun Pinus merkusii di berbagai persemaian kawasan utama hutan pinus Jawa Timur. J. HPT Tropika 15 (1): 44-52.
  56. Teste FP, Lalibert E, Lambers H, Auer Y, Kramer S & Kandeler E. 2016. Mycorrhizal fungal biomass and scavenging declines in phosphorus impoverished soils during ecosystem retrogression. Soil Biology & Biochemistry 92, 119-132.
  57. Tilman D, Cassman KG, Matson PA, Naylor R & Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature 418, 671–677.
  58. Tomè E, Tagliavini M & Scandellari F. 2015. Recently fixed carbon allocation in strawberry plants and concurrent inorganic nitrogen uptake through arbuscular mycorrhizal fungi. J. Plant Physiol. 179, 83–89. doi:http://dx.doi.org/10.1016/j.jplph.2015.02.008.
  59. Van der Heijden MG, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A & Sanders IR. 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist 172, 739-752.
  60. Verma M, Brar SK, Tyagi RD, Surampalli RY & Valero JR. 2007. Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochemistry Engineering Journal 37, 1-20.
  61. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL & Lorito M. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 72, 80–86.
  62. Voets L, De Boulois HD, Renard L, Strullu DG & Declerck S. 2005. Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol. Lett. 248, 111–118.
  63. Wang B & Qiu YL. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299-363.
  64. Werner D & Newton WE. 2005. Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer. Netherlands.
  65. Widyati E., Irianto R.S.B., Santosa S., Najmullah, & Sutarman. 2001. The impact of carbofuran environmental insecticide against fungi ectomychorryzal Pisolithus arrhizus and Schleroderma columnare inoculated on seedlings of Pinus merkusii Jung et de Vries. J. Agritek 9 (3): 1178-1182.
  66. Yedidiaa I, Benhamoub N, Kapulnikc Y & Cheta I. 2000. Induction and accumulation of PR proteins activityduring early stages of root colonizationby the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry 38 (11): 863–873.
  67. Youssef SA, Tartoura KA & Abdelraouf GA. 2016. Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biological Control 100, 79–86.