2018
Buku Ajar

Monograf Aplikasi Biofertilizer Pada Kedele Tahan Naungan


Sutarman
Universitas Muhammadiyah Sidoarjo, Indonesia
Picture in here are illustration from public domain image or provided by the author, as part of their works
Published September 21, 2021
Keywords
  • Monograf,
  • Aplikasi Biofertilizer,
  • Kedele Tahan Naungan
How to Cite
Sutarman. (2021). Monograf Aplikasi Biofertilizer Pada Kedele Tahan Naungan. Umsida Press, 1-65. https://doi.org/10.21070/2018/978-979-3401-92-8

Abstract

Puji syukur kehadirat Allah SWT atas tersusunnya monograf dengan judul: “Aplikasi Biofertilizer pada Kedele Tahan Naungan” yang merupakan salah satu luaran penelitian sesuai kompetensi penyusun di bidang kesehatan dan penyakit tanaman serta mikrobiologi tanah pertanian. Buku ini disusun berdasarkan hasil penelitian dan kajian literatur yang bersumber pada berbagai artikel jurnal Internasional relevan terkait. Nilai kebaruan penelitian ini adalah pemanfaatan isolat nodul akar tumbuhan liar putri malu (Mimosa pudica) yang diintegrasikan dengan biofertilizer endomikoriza dan Trichoderma dari lantai hutan pada tanaman kedele tahan naungan. Hasil penelitian ini diharapkan dapat menjawab tantangan pewujudan swasembada kedele dengan
mengoptimalkan lahan hutan tanaman, perkebunan, dan sistem tumpangsari lahan kering lainnya yang belum pernah ditanami kedele sebelumnya dengan kondisi intensitas sinar matahari yang relatif sedang hingga rendah. Pada kesempatan ini penulis menyampaikan terima kasih
kepada: Rektor Universitas Muhammadiyah Sidoarjo (UMSIDA), Dekan, Ketua Program Studi Agroteknologi serta Kepala Laboratorium Agrokompleks Fakultas Pertanian UMSIDA atas dukungan moril dan fasilitas yang disediakan bagi kelancaran penelitian dan penyusunan buku ini. Semoga karya ilmiah ini bermanfaat.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. AlAskar AA & Rashad YM. 2010. Arbuscular mycorrhizal fungi: a biocontrol agent against common bean Fusarium root rot disease. Plant Pathol. J. 9, 31–38.
  2. Alguacil MM, Torrecillas E, García-Orenes F & Roldán A. 2014. Changes in the composition and diversity of AMF communities mediated by managementpractices in a Mediterranean soil are related with increases in soil biological activity. Soil Biol. Biochem. 76, 34–44.
  3. Al-Taweil HI, Osman MB, Aidil AH & Wan-Yussof WM. 2009. Optimizing of Trichoderma viride cultivation in submerged state fermentation. Am. J. Appl. Sci. 6,1277–1281.
  4. Altieri, M.A. and C.I. Nicholis. 2005. Agroecology and the Search for a Truly Sustainable Agriculture. Mexico. United Nations Environments Programme. Anonim. 2017. Jokowi: Pemanfaatan 36,8 Juta Hektare Lahan Pertanian Belum Maksimal. http://katadata.co.id/berita/2016/12/07/jokowipemanfaat an368jutahektarelahanpertanianbelummaksimal. Diakses. Diakses 22 April 2017.
  5. Atman. 2006. Pengelolaan Tanaman Kedelai di Lahan Kering Masam. Jurnal Tambua, 5 (3): 281-287.
  6. Badan Pusat Statistik (BPS), 2016. “Luas Panen Kedelai Menurut Provinsi (ha), 1993-2015”, https://www.bps.go.id/ linkTableDinamis/view/id/870. Diakses 1 May 2017.
  7. Balitbang Pertanian. 2016. Varietas Dena 1. Badan penelitian dan pengembangan pertanian. Kementrian pertanian. http://new.litbang.pertanian.go.id/varietas/1092/. diakses 09 april 2017. 48
  8. Benítez T, Rincón AM, Limón MC & Codon A. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7 (4), 249–260.
  9. Buysens C, César V, Ferrais F, De Boulois HD & Declerck S. 2016. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Applied Soil Ecology 105,137–143.
  10. Camenzind T, Homeier J, Dietrich K, Hempel S, Hertel D, Krohn A, Leuschner C, Oelmann Y, Olsson PA, Suarez JP & Rillig MC. 2016. Opposing effects ofnitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biology & Biochemistry 94, 37-47.
  11. Cavallazzi JRP, Filho OK, Stürmer SL, Rygiewicz PT & de Mendonça MM. 2007. Screening and selecting arbuscular mycorrhizal fungi for inoculating micropropagated apple rootstocks in acid soils. Plant Cell Tissue Organ Cult. 90, 117–129. doi:http://dx.doi.org/10.1007/s11240-006-9163-6.
  12. Cheng W, Johnson DW & Fu S. 2003. Rhizosphere effects on decomposition. Soil Sci. Soc. Am. J. 67, 1418–1427. doi:http://dx.doi.org/10.2136/sssaj2003.1418.
  13. Chowdappa P, Kumar SPM, Lakshmi MJ & Upreti KK. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol. Control 65, 109–117.
  14. Clarkson JP, Mead A, Payne T & Whipps JM. 2004. Effect of environmental factors and Sclerotium cepivorum isolate on sclerotial degradation and biological control 49 of white rot by Trichoderma. Plant Pathol. 53, 353– 362.
  15. Dakora, F.D., S.B.M. Chimpango; A.J. Valentine, C. Elmerich, and W.E. Newton. 2008. Biological Nitrogen Fixation: Towards Poverty Alleviation through Sustainable Agriculture. Netherland. Dayana Amira R, Roshanida AR, Rosli MI, Zahrah SFMF, Anuar MJ & Adha NCM. 2012. Bioconversion of empty fruit bunch (EFB) and palm oil mill effluent (POME) into compost using Trichoderma virens. African Journal of Biotechnology 10, 18775 18780.
  16. DeLucia EH & Thomas RB, “Photosynthetic responses to CO2 enrichment of four hardwood species in a forest understorey”. Oecologia, vol. 122, pp. 11-19, 2000.
  17. Dubey SC, Suresha M & Singha B. 2007. Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol. Control 40, 118–127.
  18. Foyer, C.H. and G. Noctor. 2004. Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism. London. Kluwer Academic Publisher.
  19. Gams W & Bissett J. 2002. Morphology and identification of Trichoderma. In: Kubicek CP & Harman GE (Eds.). Trichoderma and Gliocladium, Volume 1: Basic biology, taxonomy and genetics. pp. 3-34. Taylor & Francis Ltd. London.
  20. García-González I, Quemada M, Gabriel JL & Hontoria C. 2016. Arbuscular mycorrhizal fungal activity responses to winter cover crops in a sunflower and maize cropping system. Applied Soil Ecology 102, 10– 18. 50
  21. Geisseler D & Horwath WR. 2009. Relationship between carbon and nitrogen availability and extracellular enzyme activities in soil. Pedobiologia 53, 87–98.
  22. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D & Wipf D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 519–530.
  23. Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L & Stewart A. 2012. Have biopesticides come of age? Trends Biotechnol. 30, 250- 258.
  24. Gravel V, Antoun H & Tweddell RJ. 2007. Growthstimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol. Biochem. 39, 1968–1977.
  25. Harman GE, Howell CR, Viterbo A, Chet I & Lorito M. 2004. Trichoderma species – opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2, 43–56.
  26. Harman GE. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96, 190–194.
  27. Hayder G, Mumraz SS, Khan A, & Khan S. 2003. Maize and soybean intercropping under various levels of soybean seed rates. Asian Journal of Plant Sciences 2, 339-341. doi:10.3923/ajps.2003.339.341.
  28. Heinemeyer A, Hartley IP, Evans SP, Carreira De La Fuente JA & Ineson P. 2007. Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Glob. Change Biol. 13, 1786–1797. doi:http://dx.doi.org/10.1111/j.1365- 2486.2007.01383.x.
  29. Holisova P, Zitova M, . Klem K, & Urban O. 2012. Effect of elevated carbondioxide concentration on carbon 51 assimilation under fluctuating light. J Environ Qual. 41, 1931-1938.
  30. Howell CR. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87, 4–10.
  31. Hu X, Roberts DP, Xie L, Yu C, Li Y, Qin L, Hu L, Zhang Y & Liao X. 2016. Use of formulated Trichoderma sp. Tri-1 in combination with reducedrates of chemical pesticide for control of Sclerotinia sclerotiorium on oilseed rape. Crop Protection 79, 124-127.
  32. Kakiuchi J & Kobata T. 2004. Shading and thinning effects on seed and shoot dry matter increase in determinate soybean during the seed-filling period. Agronomy Journal, 96, 398-405 doi:10.2134/agronj2004.0398
  33. Komariah A, Waloeyo EC, & Hidayat O. 2017. Pengaruh penggunaan naungan terhadap pertumbuhan dan hasil dua varietas tanaman kacang merah (Phaseolus vulgaris L.). Paspalum 5 (1): 33-41.
  34. Kumekawa Y, Miyata H, Ohga K, Hayakawa H, Yokoyama J, Ito K, Tebayashi S, Arakawa R, & Fukuda T. 2013. Comparative analyses of stomatal size and density among ecotypes of Aster hispidus (Asteraceae). American Journal of Plant Sciences 4, 524-527.
  35. Kuzyakov Y & Larionova AA. 2005. Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J. Plant Nutr. Soil Sci. 168, 503–520. doi:http://dx.doi.org/10.1002/jpln.200421703.
  36. Leakey ADB, Scholes JD, & Press MC. 2005.Physiological and ecological significance of sunflecks for dipterocarp seedlings”. J Exp Bot. 56, 469-482. 52
  37. Legaya N, Grassein F, Binet MN, Arnoldi C, Personeni E, Perigon S, Polyd F, Pommier T, Puissant J, Clément JC, Lavorel S & Mouhamadou B. 2016. Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonisation and soil bacterial activities. Applied Soil Ecology 98, 132–139. Lichtfouse, E. 2010. Sustainable Agriculture Reviews 3.
  38. Sociology, Organic Farming, Climate Change, and Soil Science. Netherlands. Springer. Ma HX, Feng XJ, Chen Y, Chen CJ & Zhou M. 2009.
  39. Occurrence and characterization of dimethachlon insensitivity in Sclerotinia sclerotiorum in JinagsuProvince of China. Plant Dis. 93, 36-42.
  40. Martinson GO, Corre MD & Veldkamp E. 2013. Responses of nitrous oxide fluxes and soil nitrogen cycling to nutrient additions in montane forests along an elevation gradient in southern Ecuador. Biogeochemistry 112, 625-636.
  41. Moyano F, Kutsch W & Schulze E. 2007. Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biol. Biochem. 39, 843–853. doi:http://dx.doi.org/10.1016/j.soilbio.2006.10.001.
  42. Muis A, Indradewa D , Widada J. 2013. Pengaruh inokulasi mikoriza arbuskula terhadap pertumbuhan dan hasil kedelai (Glycine max (l.) Merrill) pada berbagai interval penyiraman. Vegetalika 2 (2): 7-20.
  43. Naidu CV & Swamu PM. 1993. Effect of shade on growth, biomass production and associated physiological parameters in Pongamia Pinnata (Linn.) Pierre. IndianJournal of Plant Physiology 37, 212-214.
  44. Naumburg E &. Ellsworth DS, 2000, Photosynthesis sunfleck utilization potential of understory saplings growung 53 under elevated CO2 in FACE. Oecologia. 122, 163-174.
  45. Neumann J & Matzner E. 2014. Contribution of newly grown extramatricalectomycorrhizal mycelium and fine roots to soil respiration in a young Norway spruce site. Plant Soil 378, 73–82. doi:http://dx.doi.org/10.1007/s11104- 013-2018-0.
  46. Noortasiah, 2005. Pemanfaatan Bakteri Rhizobium pada tanaman kedelai di lahan lebak. Buletin Teknik Pertanian, 10 (2): 57-60.
  47. Nottingham AT, Turner BL, Winter K, van der Heijden MGA & Tanner EVJ. 2010. Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytol. 186, 957–967. doi:http://dx.doi.org/10.1111/j.1469- 8137.2010.03226.x.
  48. Nurudin MJ dan Sutarman. 2014. Potensi Trichoderma sp sebagai pengendali Phytopthora palmivora penyebab hawar daun bibit kakao. J Nabatia 11 (1): 21-28.
  49. Panhwar MA, Mempn FH, Kalhoro MA, & Somro MI. 2004. Performance of maize in intercropping system with soybean under different planting patterns and nitrogen levels. Journal of Applied Science 4, 201-204. doi:10.3923/jas.2004.201.204.
  50. Paul EA & Clarck FE. 1996. Soil microbiology and biochemistry 2nd ed. Academic Press. San Diego. Penka M. 2012. Stomatal and cuticular transpiration. In: Sebanek J (ed.). Plant physiology,. pp.55-64. Elsivier, Amsterdam.
  51. Polthanee A, Promsaena K, & Laoken A. 2011. Influence low light intensity on growth and yield of four soybean cultivars during wet and dry seasons of Northeast 54
  52. Thailand. Agricultural Sciences 2 (2): 61-67. doi:10.4236/as.2011.22010.
  53. Polthanee A & Treloges V. 2002. Growth and yield of mungbean cultivars in mungbean-corn relay
  54. intercropping systems. Journal of International Society for Southeast Asian Agricultural Sciences 8, 1-14. Pruksakorna P, Araia M, Kotokua N, Vilchèze C,. Baughn AD, Moodley P, Jacobs WR Jr. & Kobayashia M. 2010. Trichoderins, novel aminolipopeptides from a
  55. marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorganic & MedicinalChemistry Letters 20 (12): 3658–3663
  56. Purwaningsih, S. 2005. Rhizobium dari tanah kebun biologi Wamena. Biodiversitas. 6(2): 82-84.
  57. Putra RR, Syafruddin, & Jumini. 2016. Produksi dan mutu benih beberapa varietas kedelai lokal aceh (Glycine max (l.) Merr.) dengan pemberian dosis mikoriza yang berbeda pada tanah entisol. Jurnal Kawista 1 (1) : 37- 44.
  58. Read D & Perez-Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? New Phytologist 157, 475-492.
  59. Richardson A, Lynch J, Ryan P, Delhaize E, Smith FA, Smith SE, Harvey P, Ryan M, Venklaas E, Lambers H, Oberson A, Culvenor R & Simpson R. 2011. Plant and
  60. microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil 349, 121-156. Rillig MC, Wright SF, Nichols KA, Schmidt WF & Torn MS. 2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233, 167–177.
  61. Samuels GJ. 2006. Trichoderma: Systematics, the Sexual State, and Ecology. Phytopathology 96 (2): 195-206. 55 Saravanakumar K, Yu C, Dou K, Wang M, Li Y & Chen J. 2016. Synergistic effect of Trichoderma-derive antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biological Control 94 (2016) 37–46.
  62. Sarjan M dan Sab’i. 2014. Karakteristik Polong Kedelai Varitas Unggul yang Terserang Hama Pengisap Polong(Riptortus linearis) pada Kondisi Cekaman Kekeringan. Jurnal Lahan Suboptimal 3 (2): 168-180
  63. Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Monoharan PT & Rajendran A. 2009. Effect of single application of Trichoderma viride and Pseudomonas fluorences on growth promotion in cotton plants. Afr. J. Agric. Res. 4, 1220–1225.
  64. Sikarwar R, Rajawat BS, & Sharma KR. 2014. Studies on relationship between stomatal density and oleoresin yield in chirpine (Pinus roxburghii Sargent). International Journal of Advanced Research 2, 751-758.
  65. Singh, B., R. Kaur, and K. Singh. 2008. Characterization of Rhizobium Strain Isolated from the Roots of Trigonella foenumgraecum (fenugreek). African Journal of Biotechnology. 7 (20): 3671- 3676.
  66. Sitanggang RM, Rahmawati N, & Hanum C. 2014.Pertumbuhan kedelai melalui aplikasi asam askorbat dan inokulasi fungi mikoriza arbuskular pada lahan salin dengan tingkat salinitas yang berbeda. Jurnal Online Agroekoteknologi 2 (4): 1589 – 1595. Six J, Elliott ET & Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103. 56
  67. Smith SE & Smith FA. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62, 227-250.
  68. Srivastava R., Khalid A, Singh US & Sharma AK. 2010. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianu formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biological Control 55, 24-31.
  69. Sullivan, P. 2003. Applying the Principles of Sustainable Farming. Fundamental of Sustainable Agriculture. ATTRA.
  70. Suriadikarta DA & Simanungkalit RDM. 2006. Pendahuluan. In: Simanungkalit RDM, Suriadikarta DA, Saraswati R, Setyorini D & Hartatik W (eds.). Pupuk organic dan pupuk hayati. Pp. 1-10.
  71. Balai Besar Litbang Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian. Bogor. Sutarman. 2016a. Seleksi Trichoderma Spp Dari Bawah Tegakan Pinus Dan Uji Daya Dukung Isolat Terpilih Terhadap Pertumbuhan Tomat Dan Sawi. Hlm. 125-134 dalam Prosiding Konser Karya Ilmiah Nasional; Salatiga, 4 Agustus 2016. Prihtanti TM dan Herawati MM (peny,), Salatiga, Indonesia, Universitas Kristen Satya Wacana, Salatiga. Sutarman. 2016b Pengujian Trichoderma sebagai pengendali hawar daun bibit kakao yang disebabkan oleh Phytopthora palmivora. J Hama Penyakit Tropika 17 (1): 51-56.
  72. Talbot JM, Allison SD & Treseder KK. 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct. Ecol. 22, 955–963. 57 doi:http://dx.doi.org/10.1111/j.1365- 2435.2008.01402.x.
  73. Tang Y, Okuda T, Awang M, Rahim Nik A, & Tani M. 2003. Sunfleck contribution to leaf carbon gain in tree seedlings from gap and the understorey in a troical rai forest. Biotropica 31, 268-278.
  74. Tomamitsu H & Tang Y. 2012. Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior. Oecologia 169, 869-878.
  75. Tomè E, Tagliavini M & Scandellari F. 2015. Recently fixed carbon allocation in strawberry plants and concurrent inorganic nitrogen uptake through arbuscular mycorrhizal fungi. J. Plant Physiol. 179, 83–89. doi:http://dx.doi.org/10.1016/j.jplph.2015.02.008.
  76. Van der Heijden MG, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A & Sanders IR. 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist 172, 739-752.
  77. Vargas Gil S, Pastorb S & Marcha GJ. 2009. Quantitative isolation of biocontrol agents Trichoderma spp. Gliocladium spp. and Actinomycetes from soil with culture media. Microbiol. Res. 164, 196–205.
  78. Verma M, Brar SK, Tyagi RD, Surampalli RY & Valero JR. 2007. Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochemistry Engineering Journal 37, 1-20.
  79. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL & Lorito M. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 72, 80–86. 58
  80. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra RS,Woo L & Lorito M. 2008. Trichoderma–plant– pathogen interactions. Soil Biol. Biochem. 40, 1–10. Voets L, De Boulois HD, Renard L, Strullu DG & DeclerckS. 2005. Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol. Lett. 248, 111–118.
  81. Wang B & Qiu YL. 2006. Phylogenetic distribution andevolution of mycorrhizas in land plants. Mycorrhiza 16, 299-363.
  82. Werner, D. and W.E. Newton. 2005. Nitrogen Fixation in Agriculture, Forestry, Ecology and the Environment. Netherlands. Springer. Wurth KR, Winter R, & Korner C. 1998. In situ responses to elevated CO2, in tropical forest understorey plant”. Func Ecol. 12, 886-895.
  83. Yedidiaa I, Benhamoub N, Kapulnikc Y & Cheta I. 2000. Induction and accumulation of PR proteins activityduring early stages of root colonizationby the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry 38 (11): 863–873.
  84. Yulida M. 2016. Ini Jurus Kementan dan F AO Agar Lahan Kering Bisa Digarap Petani. https://finance.detik.com/ekonomibisnis/ 3364375/inijur uskementandanfaoagarlahankeringbisadigarappet an. Diakses 2 Mei 2017.
  85. Youssef SA, Tartoura KA & Abdelraouf GA. 2016. Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. BiologicalControl 100, 79–86.